File size: 14,733 Bytes
bceb61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b59769
 
 
 
 
 
 
 
 
 
bceb61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b59769
 
bceb61c
 
 
6b59769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bceb61c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: mit-b0_corm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mit-b0_corm

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0433
- Mean Iou: 0.9210
- Mean Accuracy: 0.9571
- Overall Accuracy: 0.9853
- Accuracy Background: 0.9977
- Accuracy Corm: 0.9360
- Accuracy Damage: 0.9377
- Iou Background: 0.9944
- Iou Corm: 0.8762
- Iou Damage: 0.8923

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 40

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Corm | Accuracy Damage | Iou Background | Iou Corm | Iou Damage |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:---------------:|:--------------:|:--------:|:----------:|
| 0.933         | 0.6061  | 20   | 1.0299          | 0.3591   | 0.6054        | 0.6910           | 0.7236              | 0.1098        | 0.9827          | 0.7236         | 0.0867   | 0.2671     |
| 0.6505        | 1.2121  | 40   | 0.6909          | 0.6522   | 0.8240        | 0.9013           | 0.9328              | 0.5651        | 0.9740          | 0.9328         | 0.4509   | 0.5728     |
| 0.4133        | 1.8182  | 60   | 0.4184          | 0.7567   | 0.8872        | 0.9394           | 0.9609              | 0.7307        | 0.9701          | 0.9607         | 0.6218   | 0.6875     |
| 0.3299        | 2.4242  | 80   | 0.3451          | 0.8351   | 0.9306        | 0.9617           | 0.9751              | 0.8924        | 0.9243          | 0.9748         | 0.7569   | 0.7735     |
| 0.2594        | 3.0303  | 100  | 0.2506          | 0.8703   | 0.9412        | 0.9727           | 0.9862              | 0.8989        | 0.9384          | 0.9852         | 0.8019   | 0.8237     |
| 0.2253        | 3.6364  | 120  | 0.2006          | 0.8851   | 0.9403        | 0.9779           | 0.9939              | 0.8672        | 0.9599          | 0.9915         | 0.8207   | 0.8430     |
| 0.2222        | 4.2424  | 140  | 0.1654          | 0.8990   | 0.9490        | 0.9805           | 0.9946              | 0.9446        | 0.9079          | 0.9920         | 0.8438   | 0.8612     |
| 0.1347        | 4.8485  | 160  | 0.1413          | 0.9048   | 0.9508        | 0.9819           | 0.9956              | 0.9334        | 0.9234          | 0.9928         | 0.8526   | 0.8689     |
| 0.1366        | 5.4545  | 180  | 0.1155          | 0.9094   | 0.9516        | 0.9829           | 0.9966              | 0.9258        | 0.9325          | 0.9933         | 0.8583   | 0.8765     |
| 0.1121        | 6.0606  | 200  | 0.1086          | 0.8938   | 0.9447        | 0.9801           | 0.9961              | 0.9628        | 0.8753          | 0.9933         | 0.8392   | 0.8487     |
| 0.0982        | 6.6667  | 220  | 0.0963          | 0.9115   | 0.9524        | 0.9835           | 0.9972              | 0.9374        | 0.9227          | 0.9938         | 0.8626   | 0.8780     |
| 0.0993        | 7.2727  | 240  | 0.0892          | 0.9094   | 0.9513        | 0.9832           | 0.9968              | 0.9001        | 0.9571          | 0.9940         | 0.8570   | 0.8773     |
| 0.0813        | 7.8788  | 260  | 0.0842          | 0.9127   | 0.9543        | 0.9837           | 0.9966              | 0.9380        | 0.9281          | 0.9939         | 0.8643   | 0.8798     |
| 0.1059        | 8.4848  | 280  | 0.0774          | 0.9152   | 0.9541        | 0.9842           | 0.9973              | 0.9258        | 0.9391          | 0.9940         | 0.8673   | 0.8843     |
| 0.082         | 9.0909  | 300  | 0.0729          | 0.9159   | 0.9541        | 0.9843           | 0.9975              | 0.9294        | 0.9355          | 0.9940         | 0.8681   | 0.8854     |
| 0.0725        | 9.6970  | 320  | 0.0692          | 0.9162   | 0.9544        | 0.9844           | 0.9975              | 0.9247        | 0.9411          | 0.9941         | 0.8686   | 0.8861     |
| 0.0814        | 10.3030 | 340  | 0.0687          | 0.9161   | 0.9541        | 0.9844           | 0.9975              | 0.9155        | 0.9492          | 0.9942         | 0.8675   | 0.8865     |
| 0.076         | 10.9091 | 360  | 0.0640          | 0.9157   | 0.9555        | 0.9843           | 0.9968              | 0.9219        | 0.9479          | 0.9941         | 0.8680   | 0.8849     |
| 0.07          | 11.5152 | 380  | 0.0633          | 0.9166   | 0.9553        | 0.9845           | 0.9973              | 0.9375        | 0.9310          | 0.9941         | 0.8698   | 0.8859     |
| 0.0674        | 12.1212 | 400  | 0.0611          | 0.9176   | 0.9549        | 0.9847           | 0.9977              | 0.9217        | 0.9453          | 0.9943         | 0.8704   | 0.8881     |
| 0.0638        | 12.7273 | 420  | 0.0601          | 0.9116   | 0.9522        | 0.9836           | 0.9977              | 0.9529        | 0.9059          | 0.9941         | 0.8641   | 0.8768     |
| 0.0566        | 13.3333 | 440  | 0.0582          | 0.9176   | 0.9561        | 0.9847           | 0.9972              | 0.9322        | 0.9387          | 0.9943         | 0.8714   | 0.8872     |
| 0.0582        | 13.9394 | 460  | 0.0614          | 0.9077   | 0.9502        | 0.9829           | 0.9976              | 0.9583        | 0.8948          | 0.9941         | 0.8588   | 0.8700     |
| 0.0555        | 14.5455 | 480  | 0.0561          | 0.9146   | 0.9534        | 0.9841           | 0.9978              | 0.9481        | 0.9142          | 0.9941         | 0.8679   | 0.8817     |
| 0.053         | 15.1515 | 500  | 0.0540          | 0.9182   | 0.9551        | 0.9848           | 0.9977              | 0.9185        | 0.9492          | 0.9943         | 0.8707   | 0.8895     |
| 0.059         | 15.7576 | 520  | 0.0549          | 0.9180   | 0.9565        | 0.9848           | 0.9970              | 0.9248        | 0.9478          | 0.9943         | 0.8711   | 0.8887     |
| 0.0484        | 16.3636 | 540  | 0.0529          | 0.9177   | 0.9563        | 0.9847           | 0.9973              | 0.9405        | 0.9311          | 0.9943         | 0.8721   | 0.8866     |
| 0.0559        | 16.9697 | 560  | 0.0510          | 0.9192   | 0.9565        | 0.9850           | 0.9974              | 0.9268        | 0.9453          | 0.9943         | 0.8729   | 0.8904     |
| 0.0542        | 17.5758 | 580  | 0.0512          | 0.9190   | 0.9569        | 0.9850           | 0.9973              | 0.9351        | 0.9382          | 0.9944         | 0.8733   | 0.8894     |
| 0.0451        | 18.1818 | 600  | 0.0505          | 0.9184   | 0.9557        | 0.9848           | 0.9977              | 0.9428        | 0.9265          | 0.9943         | 0.8729   | 0.8880     |
| 0.05          | 18.7879 | 620  | 0.0499          | 0.9178   | 0.9542        | 0.9848           | 0.9979              | 0.9098        | 0.9549          | 0.9943         | 0.8691   | 0.8899     |
| 0.063         | 19.3939 | 640  | 0.0491          | 0.9190   | 0.9560        | 0.9850           | 0.9975              | 0.9221        | 0.9483          | 0.9943         | 0.8723   | 0.8904     |
| 0.0484        | 20.0    | 660  | 0.0501          | 0.9185   | 0.9569        | 0.9849           | 0.9972              | 0.9427        | 0.9308          | 0.9944         | 0.8732   | 0.8880     |
| 0.0527        | 20.6061 | 680  | 0.0492          | 0.9186   | 0.9561        | 0.9849           | 0.9976              | 0.9430        | 0.9276          | 0.9943         | 0.8732   | 0.8884     |
| 0.0583        | 21.2121 | 700  | 0.0476          | 0.9195   | 0.9563        | 0.9851           | 0.9976              | 0.9208        | 0.9506          | 0.9944         | 0.8730   | 0.8911     |
| 0.0557        | 21.8182 | 720  | 0.0488          | 0.9188   | 0.9565        | 0.9850           | 0.9973              | 0.9191        | 0.9531          | 0.9945         | 0.8723   | 0.8896     |
| 0.0458        | 22.4242 | 740  | 0.0481          | 0.9194   | 0.9568        | 0.9851           | 0.9973              | 0.9242        | 0.9489          | 0.9944         | 0.8729   | 0.8909     |
| 0.042         | 23.0303 | 760  | 0.0472          | 0.9202   | 0.9570        | 0.9852           | 0.9975              | 0.9326        | 0.9409          | 0.9944         | 0.8749   | 0.8911     |
| 0.0459        | 23.6364 | 780  | 0.0468          | 0.9191   | 0.9565        | 0.9850           | 0.9976              | 0.9423        | 0.9295          | 0.9944         | 0.8740   | 0.8889     |
| 0.0491        | 24.2424 | 800  | 0.0464          | 0.9204   | 0.9568        | 0.9852           | 0.9977              | 0.9361        | 0.9366          | 0.9944         | 0.8753   | 0.8914     |
| 0.0548        | 24.8485 | 820  | 0.0454          | 0.9201   | 0.9565        | 0.9852           | 0.9976              | 0.9244        | 0.9475          | 0.9944         | 0.8740   | 0.8917     |
| 0.0447        | 25.4545 | 840  | 0.0473          | 0.9176   | 0.9558        | 0.9847           | 0.9976              | 0.9477        | 0.9222          | 0.9944         | 0.8723   | 0.8863     |
| 0.0457        | 26.0606 | 860  | 0.0468          | 0.9203   | 0.9567        | 0.9852           | 0.9976              | 0.9270        | 0.9456          | 0.9944         | 0.8745   | 0.8922     |
| 0.0468        | 26.6667 | 880  | 0.0454          | 0.9201   | 0.9572        | 0.9852           | 0.9974              | 0.9403        | 0.9341          | 0.9944         | 0.8753   | 0.8905     |
| 0.0433        | 27.2727 | 900  | 0.0452          | 0.9208   | 0.9563        | 0.9853           | 0.9980              | 0.9339        | 0.9371          | 0.9943         | 0.8759   | 0.8923     |
| 0.0438        | 27.8788 | 920  | 0.0452          | 0.9208   | 0.9574        | 0.9853           | 0.9975              | 0.9352        | 0.9396          | 0.9944         | 0.8760   | 0.8920     |
| 0.0446        | 28.4848 | 940  | 0.0447          | 0.9210   | 0.9568        | 0.9853           | 0.9978              | 0.9349        | 0.9377          | 0.9943         | 0.8760   | 0.8926     |
| 0.0492        | 29.0909 | 960  | 0.0452          | 0.9211   | 0.9568        | 0.9853           | 0.9978              | 0.9352        | 0.9374          | 0.9943         | 0.8762   | 0.8928     |
| 0.0481        | 29.6970 | 980  | 0.0456          | 0.9195   | 0.9567        | 0.9851           | 0.9976              | 0.9443        | 0.9283          | 0.9944         | 0.8747   | 0.8893     |
| 0.0405        | 30.3030 | 1000 | 0.0447          | 0.9206   | 0.9574        | 0.9853           | 0.9975              | 0.9391        | 0.9355          | 0.9944         | 0.8758   | 0.8916     |
| 0.0505        | 30.9091 | 1020 | 0.0443          | 0.9210   | 0.9570        | 0.9853           | 0.9978              | 0.9370        | 0.9364          | 0.9944         | 0.8763   | 0.8923     |
| 0.047         | 31.5152 | 1040 | 0.0450          | 0.9204   | 0.9568        | 0.9853           | 0.9976              | 0.9223        | 0.9505          | 0.9945         | 0.8744   | 0.8923     |
| 0.0548        | 32.1212 | 1060 | 0.0452          | 0.9192   | 0.9561        | 0.9850           | 0.9978              | 0.9442        | 0.9261          | 0.9944         | 0.8744   | 0.8889     |
| 0.0445        | 32.7273 | 1080 | 0.0442          | 0.9208   | 0.9573        | 0.9853           | 0.9975              | 0.9320        | 0.9426          | 0.9944         | 0.8758   | 0.8921     |
| 0.0539        | 33.3333 | 1100 | 0.0435          | 0.9208   | 0.9571        | 0.9853           | 0.9976              | 0.9359        | 0.9379          | 0.9944         | 0.8758   | 0.8921     |
| 0.0383        | 33.9394 | 1120 | 0.0459          | 0.9171   | 0.9549        | 0.9846           | 0.9979              | 0.9493        | 0.9175          | 0.9943         | 0.8716   | 0.8853     |
| 0.0478        | 34.5455 | 1140 | 0.0443          | 0.9203   | 0.9572        | 0.9852           | 0.9974              | 0.9246        | 0.9496          | 0.9945         | 0.8748   | 0.8916     |
| 0.0432        | 35.1515 | 1160 | 0.0442          | 0.9210   | 0.9571        | 0.9853           | 0.9977              | 0.9349        | 0.9388          | 0.9944         | 0.8762   | 0.8924     |
| 0.0468        | 35.7576 | 1180 | 0.0439          | 0.9208   | 0.9572        | 0.9853           | 0.9976              | 0.9371        | 0.9368          | 0.9944         | 0.8761   | 0.8919     |
| 0.0475        | 36.3636 | 1200 | 0.0443          | 0.9209   | 0.9571        | 0.9853           | 0.9977              | 0.9371        | 0.9364          | 0.9944         | 0.8762   | 0.8921     |
| 0.0388        | 36.9697 | 1220 | 0.0436          | 0.9208   | 0.9573        | 0.9853           | 0.9976              | 0.9371        | 0.9373          | 0.9944         | 0.8761   | 0.8919     |
| 0.0468        | 37.5758 | 1240 | 0.0431          | 0.9208   | 0.9574        | 0.9853           | 0.9975              | 0.9343        | 0.9405          | 0.9944         | 0.8760   | 0.8921     |
| 0.0426        | 38.1818 | 1260 | 0.0445          | 0.9205   | 0.9570        | 0.9852           | 0.9977              | 0.9415        | 0.9318          | 0.9944         | 0.8758   | 0.8912     |
| 0.0549        | 38.7879 | 1280 | 0.0436          | 0.9209   | 0.9571        | 0.9853           | 0.9977              | 0.9373        | 0.9362          | 0.9944         | 0.8761   | 0.8921     |
| 0.045         | 39.3939 | 1300 | 0.0438          | 0.9208   | 0.9573        | 0.9853           | 0.9976              | 0.9381        | 0.9362          | 0.9944         | 0.8760   | 0.8919     |
| 0.0287        | 40.0    | 1320 | 0.0433          | 0.9210   | 0.9571        | 0.9853           | 0.9977              | 0.9360        | 0.9377          | 0.9944         | 0.8762   | 0.8923     |


### Framework versions

- Transformers 4.44.1
- Pytorch 2.6.0+cpu
- Datasets 2.21.0
- Tokenizers 0.19.1