File size: 32,152 Bytes
50628b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import math
import random
from typing import Any, Tuple, List, Union
import cv2
import numpy as np
import torch
from numpy import ndarray
from torch import Tensor
from torchvision.transforms import functional as F_vision
__all__ = [
"image_to_tensor", "tensor_to_image",
"image_resize", "preprocess_one_image",
"expand_y", "rgb_to_ycbcr", "bgr_to_ycbcr", "ycbcr_to_bgr", "ycbcr_to_rgb",
"rgb_to_ycbcr_torch", "bgr_to_ycbcr_torch",
"center_crop", "random_crop", "random_rotate", "random_vertically_flip", "random_horizontally_flip",
"center_crop_torch", "random_crop_torch", "random_rotate_torch", "random_vertically_flip_torch",
"random_horizontally_flip_torch",
]
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def _cubic(x: Any) -> Any:
"""Implementation of `cubic` function in Matlab under Python language.
Args:
x: Element vector.
Returns:
Bicubic interpolation
"""
absx = torch.abs(x)
absx2 = absx ** 2
absx3 = absx ** 3
return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (
-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (
((absx > 1) * (absx <= 2)).type_as(absx))
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def _calculate_weights_indices(in_length: int,
out_length: int,
scale: float,
kernel_width: int,
antialiasing: bool) -> [np.ndarray, np.ndarray, int, int]:
"""Implementation of `calculate_weights_indices` function in Matlab under Python language.
Args:
in_length (int): Input length.
out_length (int): Output length.
scale (float): Scale factor.
kernel_width (int): Kernel width.
antialiasing (bool): Whether to apply antialiasing when down-sampling operations.
Caution: Bicubic down-sampling in PIL uses antialiasing by default.
Returns:
weights, indices, sym_len_s, sym_len_e
"""
if (scale < 1) and antialiasing:
# Use a modified kernel (larger kernel width) to simultaneously
# interpolate and antialiasing
kernel_width = kernel_width / scale
# Output-space coordinates
x = torch.linspace(1, out_length, out_length)
# Input-space coordinates. Calculate the inverse mapping such that 0.5
# in output space maps to 0.5 in input space, and 0.5 + scale in output
# space maps to 1.5 in input space.
u = x / scale + 0.5 * (1 - 1 / scale)
# What is the left-most pixel that can be involved in the computation?
left = torch.floor(u - kernel_width / 2)
# What is the maximum number of pixels that can be involved in the
# computation? Note: it's OK to use an extra pixel here; if the
# corresponding weights are all zero, it will be eliminated at the end
# of this function.
p = math.ceil(kernel_width) + 2
# The indices of the input pixels involved in computing the k-th output
# pixel are in row k of the indices matrix.
indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
out_length, p)
# The weights used to compute the k-th output pixel are in row k of the
# weights matrix.
distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices
# apply cubic kernel
if (scale < 1) and antialiasing:
weights = scale * _cubic(distance_to_center * scale)
else:
weights = _cubic(distance_to_center)
# Normalize the weights matrix so that each row sums to 1.
weights_sum = torch.sum(weights, 1).view(out_length, 1)
weights = weights / weights_sum.expand(out_length, p)
# If a column in weights is all zero, get rid of it. only consider the
# first and last column.
weights_zero_tmp = torch.sum((weights == 0), 0)
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
indices = indices.narrow(1, 1, p - 2)
weights = weights.narrow(1, 1, p - 2)
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
indices = indices.narrow(1, 0, p - 2)
weights = weights.narrow(1, 0, p - 2)
weights = weights.contiguous()
indices = indices.contiguous()
sym_len_s = -indices.min() + 1
sym_len_e = indices.max() - in_length
indices = indices + sym_len_s - 1
return weights, indices, int(sym_len_s), int(sym_len_e)
def image_to_tensor(image: ndarray, range_norm: bool, half: bool) -> Tensor:
"""Convert the image data type to the Tensor (NCWH) data type supported by PyTorch
Args:
image (np.ndarray): The image data read by ``OpenCV.imread``, the data range is [0,255] or [0, 1]
range_norm (bool): Scale [0, 1] data to between [-1, 1]
half (bool): Whether to convert torch.float32 similarly to torch.half type
Returns:
tensor (Tensor): Data types supported by PyTorch
Examples:
>>> example_image = cv2.imread("lr_image.bmp")
>>> example_tensor = image_to_tensor(example_image, range_norm=True, half=False)
"""
# Convert image data type to Tensor data type
tensor = F_vision.to_tensor(image)
# Scale the image data from [0, 1] to [-1, 1]
if range_norm:
tensor = tensor.mul(2.0).sub(1.0)
# Convert torch.float32 image data type to torch.half image data type
if half:
tensor = tensor.half()
return tensor
def tensor_to_image(tensor: Tensor, range_norm: bool, half: bool) -> Any:
"""Convert the Tensor(NCWH) data type supported by PyTorch to the np.ndarray(WHC) image data type
Args:
tensor (Tensor): Data types supported by PyTorch (NCHW), the data range is [0, 1]
range_norm (bool): Scale [-1, 1] data to between [0, 1]
half (bool): Whether to convert torch.float32 similarly to torch.half type.
Returns:
image (np.ndarray): Data types supported by PIL or OpenCV
Examples:
>>> example_image = cv2.imread("lr_image.bmp")
>>> example_tensor = image_to_tensor(example_image, range_norm=False, half=False)
"""
if range_norm:
tensor = tensor.add(1.0).div(2.0)
if half:
tensor = tensor.half()
image = tensor.squeeze_(0).permute(1, 2, 0).mul_(255).clamp_(0, 255).cpu().numpy().astype("uint8")
return image
def array_to_image(array: ndarray) -> Any:
"""Convert the Tensor(NCWH) data type supported by PyTorch to the np.ndarray(WHC) image data type
Args:
tensor (Tensor): Data types supported by PyTorch (NCHW), the data range is [0, 1]
range_norm (bool): Scale [-1, 1] data to between [0, 1]
half (bool): Whether to convert torch.float32 similarly to torch.half type.
Returns:
image (np.ndarray): Data types supported by PIL or OpenCV
Examples:
>>> example_image = cv2.imread("lr_image.bmp")
>>> example_tensor = image_to_tensor(example_image, range_norm=False, half=False)
"""
image = np.clip(np.transpose(np.squeeze(array, axis=0), (1, 2, 0)) * 255, 0 ,255).astype(np.uint8)
return image
def preprocess_one_image(image_path: str, device: torch.device) -> [Tensor, ndarray, ndarray]:
image = cv2.imread(image_path).astype(np.float32) / 255.0
# BGR to YCbCr
ycbcr_image = bgr_to_ycbcr(image, only_use_y_channel=False)
# Split YCbCr image data
y_image, cb_image, cr_image = cv2.split(ycbcr_image)
# Convert image data to pytorch format data
y_tensor = image_to_tensor(y_image, False, False).unsqueeze_(0)
# Transfer tensor channel image format data to CUDA device
y_tensor = y_tensor.to(device=device, non_blocking=True)
return y_tensor, cb_image, cr_image
def preprocess_one_frame(image: ndarray) -> [ndarray, ndarray, ndarray]:
image = image.astype(np.float32) / 255.0
# BGR to YCbCr
ycbcr_image = bgr_to_ycbcr(image, only_use_y_channel=False)
# Split YCbCr image data
y_image, cb_image, cr_image = cv2.split(ycbcr_image)
# Convert image data to pytorch format data
y_image = y_image[np.newaxis, np.newaxis, ...]
#print(y_image.shape)
# Transfer tensor channel image format data to CUDA device
#y_tensor = y_tensor.to(device=device, non_blocking=True)
return y_image, cb_image, cr_image
# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def image_resize(image: Any, scale_factor: float, antialiasing: bool = True) -> Any:
"""Implementation of `imresize` function in Matlab under Python language.
Args:
image: The input image.
scale_factor (float): Scale factor. The same scale applies for both height and width.
antialiasing (bool): Whether to apply antialiasing when down-sampling operations.
Caution: Bicubic down-sampling in `PIL` uses antialiasing by default. Default: ``True``.
Returns:
out_2 (np.ndarray): Output image with shape (c, h, w), [0, 1] range, w/o round
"""
squeeze_flag = False
if type(image).__module__ == np.__name__: # numpy type
numpy_type = True
if image.ndim == 2:
image = image[:, :, None]
squeeze_flag = True
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
else:
numpy_type = False
if image.ndim == 2:
image = image.unsqueeze(0)
squeeze_flag = True
in_c, in_h, in_w = image.size()
out_h, out_w = math.ceil(in_h * scale_factor), math.ceil(in_w * scale_factor)
kernel_width = 4
# get weights and indices
weights_h, indices_h, sym_len_hs, sym_len_he = _calculate_weights_indices(in_h, out_h, scale_factor, kernel_width,
antialiasing)
weights_w, indices_w, sym_len_ws, sym_len_we = _calculate_weights_indices(in_w, out_w, scale_factor, kernel_width,
antialiasing)
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
img_aug.narrow(1, sym_len_hs, in_h).copy_(image)
sym_patch = image[:, :sym_len_hs, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)
sym_patch = image[:, -sym_len_he:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(in_c, out_h, in_w)
kernel_width = weights_h.size(1)
for i in range(out_h):
idx = int(indices_h[i][0])
for j in range(in_c):
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)
sym_patch = out_1[:, :, :sym_len_ws]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)
sym_patch = out_1[:, :, -sym_len_we:]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(in_c, out_h, out_w)
kernel_width = weights_w.size(1)
for i in range(out_w):
idx = int(indices_w[i][0])
for j in range(in_c):
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])
if squeeze_flag:
out_2 = out_2.squeeze(0)
if numpy_type:
out_2 = out_2.numpy()
if not squeeze_flag:
out_2 = out_2.transpose(1, 2, 0)
return out_2
def expand_y(image: np.ndarray) -> np.ndarray:
"""Convert BGR channel to YCbCr format,
and expand Y channel data in YCbCr, from HW to HWC
Args:
image (np.ndarray): Y channel image data
Returns:
y_image (np.ndarray): Y-channel image data in HWC form
"""
# Normalize image data to [0, 1]
image = image.astype(np.float32) / 255.
# Convert BGR to YCbCr, and extract only Y channel
y_image = bgr_to_ycbcr(image, only_use_y_channel=True)
# Expand Y channel
y_image = y_image[..., None]
# Normalize the image data to [0, 255]
y_image = y_image.astype(np.float64) * 255.0
return y_image
def rgb_to_ycbcr(image: np.ndarray, only_use_y_channel: bool) -> np.ndarray:
"""Implementation of rgb2ycbcr function in Matlab under Python language
Args:
image (np.ndarray): Image input in RGB format.
only_use_y_channel (bool): Extract Y channel separately
Returns:
image (np.ndarray): YCbCr image array data
"""
if only_use_y_channel:
image = np.dot(image, [65.481, 128.553, 24.966]) + 16.0
else:
image = np.matmul(image, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [
16, 128, 128]
image /= 255.
image = image.astype(np.float32)
return image
def bgr_to_ycbcr(image: np.ndarray, only_use_y_channel: bool) -> np.ndarray:
"""Implementation of bgr2ycbcr function in Matlab under Python language.
Args:
image (np.ndarray): Image input in BGR format
only_use_y_channel (bool): Extract Y channel separately
Returns:
image (np.ndarray): YCbCr image array data
"""
if only_use_y_channel:
image = np.dot(image, [24.966, 128.553, 65.481]) + 16.0
else:
image = np.matmul(image, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [
16, 128, 128]
image /= 255.
image = image.astype(np.float32)
return image
def ycbcr_to_rgb(image: np.ndarray) -> np.ndarray:
"""Implementation of ycbcr2rgb function in Matlab under Python language.
Args:
image (np.ndarray): Image input in YCbCr format.
Returns:
image (np.ndarray): RGB image array data
"""
image_dtype = image.dtype
image *= 255.
image = np.matmul(image, [[0.00456621, 0.00456621, 0.00456621],
[0, -0.00153632, 0.00791071],
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
image /= 255.
image = image.astype(image_dtype)
return image
def ycbcr_to_bgr(image: np.ndarray) -> np.ndarray:
"""Implementation of ycbcr2bgr function in Matlab under Python language.
Args:
image (np.ndarray): Image input in YCbCr format.
Returns:
image (np.ndarray): BGR image array data
"""
image_dtype = image.dtype
image *= 255.
image = np.matmul(image, [[0.00456621, 0.00456621, 0.00456621],
[0.00791071, -0.00153632, 0],
[0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921]
image /= 255.
image = image.astype(image_dtype)
return image
def rgb_to_ycbcr_torch(tensor: Tensor, only_use_y_channel: bool) -> Tensor:
"""Implementation of rgb2ycbcr function in Matlab under PyTorch
References from:`https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion`
Args:
tensor (Tensor): Image data in PyTorch format
only_use_y_channel (bool): Extract only Y channel
Returns:
tensor (Tensor): YCbCr image data in PyTorch format
"""
if only_use_y_channel:
weight = Tensor([[65.481], [128.553], [24.966]]).to(tensor)
tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
else:
weight = Tensor([[65.481, -37.797, 112.0],
[128.553, -74.203, -93.786],
[24.966, 112.0, -18.214]]).to(tensor)
bias = Tensor([16, 128, 128]).view(1, 3, 1, 1).to(tensor)
tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias
tensor /= 255.
return tensor
def bgr_to_ycbcr_torch(tensor: Tensor, only_use_y_channel: bool) -> Tensor:
"""Implementation of bgr2ycbcr function in Matlab under PyTorch
References from:`https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion`
Args:
tensor (Tensor): Image data in PyTorch format
only_use_y_channel (bool): Extract only Y channel
Returns:
tensor (Tensor): YCbCr image data in PyTorch format
"""
if only_use_y_channel:
weight = Tensor([[24.966], [128.553], [65.481]]).to(tensor)
tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
else:
weight = Tensor([[24.966, 112.0, -18.214],
[128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]).to(tensor)
bias = Tensor([16, 128, 128]).view(1, 3, 1, 1).to(tensor)
tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias
tensor /= 255.
return tensor
def center_crop(image: np.ndarray, image_size: int) -> np.ndarray:
"""Crop small image patches from one image center area.
Args:
image (np.ndarray): The input image for `OpenCV.imread`.
image_size (int): The size of the captured image area.
Returns:
patch_image (np.ndarray): Small patch image
"""
image_height, image_width = image.shape[:2]
# Just need to find the top and left coordinates of the image
top = (image_height - image_size) // 2
left = (image_width - image_size) // 2
# Crop image patch
patch_image = image[top:top + image_size, left:left + image_size, ...]
return patch_image
def random_crop(image: np.ndarray, image_size: int) -> np.ndarray:
"""Crop small image patches from one image.
Args:
image (np.ndarray): The input image for `OpenCV.imread`.
image_size (int): The size of the captured image area.
Returns:
patch_image (np.ndarray): Small patch image
"""
image_height, image_width = image.shape[:2]
# Just need to find the top and left coordinates of the image
top = random.randint(0, image_height - image_size)
left = random.randint(0, image_width - image_size)
# Crop image patch
patch_image = image[top:top + image_size, left:left + image_size, ...]
return patch_image
def random_rotate(image,
angles: list,
center: Tuple[int, int] = None,
scale_factor: float = 1.0) -> np.ndarray:
"""Rotate an image by a random angle
Args:
image (np.ndarray): Image read with OpenCV
angles (list): Rotation angle range
center (optional, tuple[int, int]): High resolution image selection center point. Default: ``None``
scale_factor (optional, float): scaling factor. Default: 1.0
Returns:
rotated_image (np.ndarray): image after rotation
"""
image_height, image_width = image.shape[:2]
if center is None:
center = (image_width // 2, image_height // 2)
# Random select specific angle
angle = random.choice(angles)
matrix = cv2.getRotationMatrix2D(center, angle, scale_factor)
rotated_image = cv2.warpAffine(image, matrix, (image_width, image_height))
return rotated_image
def random_horizontally_flip(image: np.ndarray, p: float = 0.5) -> np.ndarray:
"""Flip the image upside down randomly
Args:
image (np.ndarray): Image read with OpenCV
p (optional, float): Horizontally flip probability. Default: 0.5
Returns:
horizontally_flip_image (np.ndarray): image after horizontally flip
"""
if random.random() < p:
horizontally_flip_image = cv2.flip(image, 1)
else:
horizontally_flip_image = image
return horizontally_flip_image
def random_vertically_flip(image: np.ndarray, p: float = 0.5) -> np.ndarray:
"""Flip an image horizontally randomly
Args:
image (np.ndarray): Image read with OpenCV
p (optional, float): Vertically flip probability. Default: 0.5
Returns:
vertically_flip_image (np.ndarray): image after vertically flip
"""
if random.random() < p:
vertically_flip_image = cv2.flip(image, 0)
else:
vertically_flip_image = image
return vertically_flip_image
def center_crop_torch(
gt_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
lr_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
gt_patch_size: int,
upscale_factor: int,
) -> Union[
Tuple[ndarray, ndarray],
Tuple[Tensor, Tensor],
Tuple[List[ndarray], List[ndarray]],
Tuple[List[Tensor], List[Tensor]]
]:
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# Detect input image data type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if input_type == "Tensor":
lr_image_height, lr_image_width = lr_images[0].size()[-2:]
else:
lr_image_height, lr_image_width = lr_images[0].shape[0:2]
# Compute low-resolution image patch size
lr_patch_size = gt_patch_size // upscale_factor
# Calculate the start indices of the crop
lr_top = (lr_image_height - lr_patch_size) // 2
lr_left = (lr_image_width - lr_patch_size) // 2
# Crop lr image patch
if input_type == "Tensor":
lr_images = [lr_image[
:,
:,
lr_top:lr_top + lr_patch_size,
lr_left:lr_left + lr_patch_size] for lr_image in lr_images]
else:
lr_images = [lr_image[
lr_top:lr_top + lr_patch_size,
lr_left:lr_left + lr_patch_size,
...] for lr_image in lr_images]
# Crop gt image patch
gt_top, gt_left = int(lr_top * upscale_factor), int(lr_left * upscale_factor)
if input_type == "Tensor":
gt_images = [v[
:,
:,
gt_top:gt_top + gt_patch_size,
gt_left:gt_left + gt_patch_size] for v in gt_images]
else:
gt_images = [v[
gt_top:gt_top + gt_patch_size,
gt_left:gt_left + gt_patch_size,
...] for v in gt_images]
# When image number is 1
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
# def random_crop_torch(
# gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
# lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
# gt_patch_size: int,
# upscale_factor: int,
# ) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
def random_crop_torch(
gt_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
lr_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
gt_patch_size: int,
upscale_factor: int,
) -> Union[
Tuple[ndarray, ndarray],
Tuple[Tensor, Tensor],
Tuple[List[ndarray], List[ndarray]],
Tuple[List[Tensor], List[Tensor]]
]:
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# Detect input image data type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if input_type == "Tensor":
lr_image_height, lr_image_width = lr_images[0].size()[-2:]
else:
lr_image_height, lr_image_width = lr_images[0].shape[0:2]
# Compute low-resolution image patch size
lr_patch_size = gt_patch_size // upscale_factor
# Just need to find the top and left coordinates of the image
lr_top = random.randint(0, lr_image_height - lr_patch_size)
lr_left = random.randint(0, lr_image_width - lr_patch_size)
# Crop lr image patch
if input_type == "Tensor":
lr_images = [lr_image[
:,
:,
lr_top:lr_top + lr_patch_size,
lr_left:lr_left + lr_patch_size] for lr_image in lr_images]
else:
lr_images = [lr_image[
lr_top:lr_top + lr_patch_size,
lr_left:lr_left + lr_patch_size,
...] for lr_image in lr_images]
# Crop gt image patch
gt_top, gt_left = int(lr_top * upscale_factor), int(lr_left * upscale_factor)
if input_type == "Tensor":
gt_images = [v[
:,
:,
gt_top:gt_top + gt_patch_size,
gt_left:gt_left + gt_patch_size] for v in gt_images]
else:
gt_images = [v[
gt_top:gt_top + gt_patch_size,
gt_left:gt_left + gt_patch_size,
...] for v in gt_images]
# When image number is 1
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
# def random_rotate_torch(
# gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
# lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
# upscale_factor: int,
# angles: list,
# gt_center: tuple = None,
# lr_center: tuple = None,
# rotate_scale_factor: float = 1.0
# ) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
def random_rotate_torch(
gt_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
lr_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
upscale_factor: int,
angles: list,
gt_center: tuple = None,
lr_center: tuple = None,
rotate_scale_factor: float = 1.0
)-> Union[
Tuple[ndarray, ndarray],
Tuple[Tensor, Tensor],
Tuple[List[ndarray], List[ndarray]],
Tuple[List[Tensor], List[Tensor]]
]:
# Random select specific angle
angle = random.choice(angles)
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# Detect input image data type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if input_type == "Tensor":
lr_image_height, lr_image_width = lr_images[0].size()[-2:]
else:
lr_image_height, lr_image_width = lr_images[0].shape[0:2]
# Rotate LR image
if lr_center is None:
lr_center = [lr_image_width // 2, lr_image_height // 2]
lr_matrix = cv2.getRotationMatrix2D(lr_center, angle, rotate_scale_factor)
if input_type == "Tensor":
lr_images = [F_vision.rotate(lr_image, angle, center=lr_center) for lr_image in lr_images]
else:
lr_images = [cv2.warpAffine(lr_image, lr_matrix, (lr_image_width, lr_image_height)) for lr_image in lr_images]
# Rotate GT image
gt_image_width = int(lr_image_width * upscale_factor)
gt_image_height = int(lr_image_height * upscale_factor)
if gt_center is None:
gt_center = [gt_image_width // 2, gt_image_height // 2]
gt_matrix = cv2.getRotationMatrix2D(gt_center, angle, rotate_scale_factor)
if input_type == "Tensor":
gt_images = [F_vision.rotate(gt_image, angle, center=gt_center) for gt_image in gt_images]
else:
gt_images = [cv2.warpAffine(gt_image, gt_matrix, (gt_image_width, gt_image_height)) for gt_image in gt_images]
# When image number is 1
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
# def random_horizontally_flip_torch(
# gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
# lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
# p: float = 0.5
# ) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
def random_horizontally_flip_torch(
gt_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
lr_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
p: float = 0.5
)-> Union[
Tuple[ndarray, ndarray],
Tuple[Tensor, Tensor],
Tuple[List[ndarray], List[ndarray]],
Tuple[List[Tensor], List[Tensor]]
]:
# Get horizontal flip probability
flip_prob = random.random()
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# Detect input image data type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if flip_prob > p:
if input_type == "Tensor":
lr_images = [F_vision.hflip(lr_image) for lr_image in lr_images]
gt_images = [F_vision.hflip(gt_image) for gt_image in gt_images]
else:
lr_images = [cv2.flip(lr_image, 1) for lr_image in lr_images]
gt_images = [cv2.flip(gt_image, 1) for gt_image in gt_images]
# When image number is 1
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
# def random_vertically_flip_torch(
# gt_images: ndarray | Tensor | list[ndarray] | list[Tensor],
# lr_images: ndarray | Tensor | list[ndarray] | list[Tensor],
# p: float = 0.5
# ) -> [ndarray, ndarray] or [Tensor, Tensor] or [list[ndarray], list[ndarray]] or [list[Tensor], list[Tensor]]:
def random_vertically_flip_torch(
gt_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
lr_images: Union[ndarray, Tensor, List[ndarray], List[Tensor]],
p: float = 0.5
)-> Union[
Tuple[ndarray, ndarray],
Tuple[Tensor, Tensor],
Tuple[List[ndarray], List[ndarray]],
Tuple[List[Tensor], List[Tensor]]
]:
# Get vertical flip probability
flip_prob = random.random()
if not isinstance(gt_images, list):
gt_images = [gt_images]
if not isinstance(lr_images, list):
lr_images = [lr_images]
# Detect input image data type
input_type = "Tensor" if torch.is_tensor(lr_images[0]) else "Numpy"
if flip_prob > p:
if input_type == "Tensor":
lr_images = [F_vision.vflip(lr_image) for lr_image in lr_images]
gt_images = [F_vision.vflip(gt_image) for gt_image in gt_images]
else:
lr_images = [cv2.flip(lr_image, 0) for lr_image in lr_images]
gt_images = [cv2.flip(gt_image, 0) for gt_image in gt_images]
# When image number is 1
if len(gt_images) == 1:
gt_images = gt_images[0]
if len(lr_images) == 1:
lr_images = lr_images[0]
return gt_images, lr_images
|