File size: 5,658 Bytes
ff6bfa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import cv2
import time
import torch
import argparse
import numpy as np
from tqdm import tqdm

import common
import imgproc
import onnxruntime as ort

torch.manual_seed(1)

parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="edsr_baseline_x2_1.onnx", help="onnx model path")
parser.add_argument('--scale', nargs='+', type=int, default=[2], help='super resolution scale')
parser.add_argument("--dir_demo", type=str, default='../video/test_1920x1080.mp4', help="demo image directory")
parser.add_argument('--rgb_range', type=int, default=255, help='maximum value of RGB')
parser.add_argument('--arch', type=str, default='espcn', help='model architecture (options: edsr、espcn)')

def quantize(img, rgb_range):
    pixel_range = 255 / rgb_range
    return np.round(np.clip(img * pixel_range, 0, 255)) / pixel_range

def from_numpy(x):
    return x if isinstance(x, np.ndarray) else np.array(x)

class VideoTester():
    def __init__(self, scale, my_model, dir_demo, rgb_range=255, cuda=True, arch='espcn'):
        self.scale = scale
        self.rgb_range = rgb_range
        self.providers = ['CUDAExecutionProvider'] if cuda else ['CPUExecutionProvider']
        self.session = ort.InferenceSession(my_model, providers=self.providers)
        self.output_names = [x.name for x in self.session.get_outputs()]
        self.input_name = self.session.get_inputs()[0].name
        self.dir_demo = dir_demo  
        self.filename, _ = os.path.splitext(os.path.basename(dir_demo))
        self.arch = arch

    def test(self):
        torch.set_grad_enabled(False)
        if not os.path.exists('experiment'):
            os.makedirs('experiment')
        for idx_scale, scale in enumerate(self.scale):
            vidcap = cv2.VideoCapture(self.dir_demo)
            total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))

            vidwri = cv2.VideoWriter(
                os.path.join('experiment', ('{}_x{}.avi'.format(self.filename, scale))),
                cv2.VideoWriter_fourcc(*'XVID'),
                vidcap.get(cv2.CAP_PROP_FPS),
                (
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                )
            )

            total_times = 0
            tqdm_test = tqdm(range(total_frames), ncols=80)
            
            if self.arch == 'edsr':
                for _ in tqdm_test:
                    success, lr = vidcap.read()
                    if not success: break
                    start_time  = time.time()
                    lr_y_image, = common.set_channel(lr, n_channels=3)
                    lr_y_image, = common.np_prepare(lr_y_image, rgb_range=self.rgb_range)
                    
                    sr = self.session.run(self.output_names, {self.input_name: lr_y_image})
                    end_time = time.time()
                    total_times += end_time - start_time
                    
                    if isinstance(sr, (list, tuple)):
                        sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr]
                    else:
                        sr = from_numpy(sr)

                    sr = quantize(sr, self.rgb_range).squeeze(0)
                    normalized = sr * 255 / self.rgb_range
                    ndarr = normalized.transpose(1, 2, 0).astype(np.uint8)
                    vidwri.write(ndarr)
                    
            elif self.arch == 'espcn':
                for _ in tqdm_test:
                    success, lr = vidcap.read()
                    if not success: break
                    start_time  = time.time()
                    
                    lr_y_image, lr_cb_image, lr_cr_image = imgproc.preprocess_one_frame(lr)
                    bic_cb_image = cv2.resize(lr_cb_image,
                              (int(lr_cb_image.shape[1] * scale),
                                int(lr_cb_image.shape[0] * scale)),
                              interpolation=cv2.INTER_CUBIC)
                    bic_cr_image = cv2.resize(lr_cr_image,
                              (int(lr_cr_image.shape[1] * scale),
                                int(lr_cr_image.shape[0] * scale)),
                              interpolation=cv2.INTER_CUBIC)
                              
                    sr = self.session.run(self.output_names, {self.input_name: lr_y_image})
                    end_time = time.time()
                    total_times += end_time - start_time
                    
                    if isinstance(sr, (list, tuple)):
                        sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr]
                    else:
                        sr = from_numpy(sr)

                    ndarr = imgproc.array_to_image(sr)
                    sr_y_image = ndarr.astype(np.float32) / 255.0
                    sr_ycbcr_image = cv2.merge([sr_y_image[:, :, 0], bic_cb_image, bic_cr_image])
                    sr_image = imgproc.ycbcr_to_bgr(sr_ycbcr_image)
                    sr_image = np.clip(sr_image* 255.0, 0 , 255).astype(np.uint8)
                    vidwri.write(sr_image)
                    
            print('Total time: {:.3f} seconds for {} frames'.format(total_times, total_frames))
            print('Average time: {:.3f} seconds for each frame'.format(total_times / total_frames)) 

            vidcap.release()
            vidwri.release()

        torch.set_grad_enabled(True)

def main():
    args = parser.parse_args()
    t = VideoTester(args.scale, args.model, args.dir_demo, arch=args.arch)
    t.test()

if __name__ == '__main__':
    main()