import os import cv2 import time import torch import argparse import numpy as np from tqdm import tqdm import common import imgproc import onnxruntime as ort torch.manual_seed(1) parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, default="edsr_baseline_x2_1.onnx", help="onnx model path") parser.add_argument('--scale', nargs='+', type=int, default=[2], help='super resolution scale') parser.add_argument("--dir_demo", type=str, default='../video/test_1920x1080.mp4', help="demo image directory") parser.add_argument('--rgb_range', type=int, default=255, help='maximum value of RGB') parser.add_argument('--arch', type=str, default='espcn', help='model architecture (options: edsr、espcn)') def quantize(img, rgb_range): pixel_range = 255 / rgb_range return np.round(np.clip(img * pixel_range, 0, 255)) / pixel_range def from_numpy(x): return x if isinstance(x, np.ndarray) else np.array(x) class VideoTester(): def __init__(self, scale, my_model, dir_demo, rgb_range=255, cuda=True, arch='espcn'): self.scale = scale self.rgb_range = rgb_range self.providers = ['CUDAExecutionProvider'] if cuda else ['CPUExecutionProvider'] self.session = ort.InferenceSession(my_model, providers=self.providers) self.output_names = [x.name for x in self.session.get_outputs()] self.input_name = self.session.get_inputs()[0].name self.dir_demo = dir_demo self.filename, _ = os.path.splitext(os.path.basename(dir_demo)) self.arch = arch def test(self): torch.set_grad_enabled(False) if not os.path.exists('experiment'): os.makedirs('experiment') for idx_scale, scale in enumerate(self.scale): vidcap = cv2.VideoCapture(self.dir_demo) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) vidwri = cv2.VideoWriter( os.path.join('experiment', ('{}_x{}.avi'.format(self.filename, scale))), cv2.VideoWriter_fourcc(*'XVID'), vidcap.get(cv2.CAP_PROP_FPS), ( int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT)) ) ) total_times = 0 tqdm_test = tqdm(range(total_frames), ncols=80) if self.arch == 'edsr': for _ in tqdm_test: success, lr = vidcap.read() if not success: break start_time = time.time() lr_y_image, = common.set_channel(lr, n_channels=3) lr_y_image, = common.np_prepare(lr_y_image, rgb_range=self.rgb_range) sr = self.session.run(self.output_names, {self.input_name: lr_y_image}) end_time = time.time() total_times += end_time - start_time if isinstance(sr, (list, tuple)): sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr] else: sr = from_numpy(sr) sr = quantize(sr, self.rgb_range).squeeze(0) normalized = sr * 255 / self.rgb_range ndarr = normalized.transpose(1, 2, 0).astype(np.uint8) vidwri.write(ndarr) elif self.arch == 'espcn': for _ in tqdm_test: success, lr = vidcap.read() if not success: break start_time = time.time() lr_y_image, lr_cb_image, lr_cr_image = imgproc.preprocess_one_frame(lr) bic_cb_image = cv2.resize(lr_cb_image, (int(lr_cb_image.shape[1] * scale), int(lr_cb_image.shape[0] * scale)), interpolation=cv2.INTER_CUBIC) bic_cr_image = cv2.resize(lr_cr_image, (int(lr_cr_image.shape[1] * scale), int(lr_cr_image.shape[0] * scale)), interpolation=cv2.INTER_CUBIC) sr = self.session.run(self.output_names, {self.input_name: lr_y_image}) end_time = time.time() total_times += end_time - start_time if isinstance(sr, (list, tuple)): sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr] else: sr = from_numpy(sr) ndarr = imgproc.array_to_image(sr) sr_y_image = ndarr.astype(np.float32) / 255.0 sr_ycbcr_image = cv2.merge([sr_y_image[:, :, 0], bic_cb_image, bic_cr_image]) sr_image = imgproc.ycbcr_to_bgr(sr_ycbcr_image) sr_image = np.clip(sr_image* 255.0, 0 , 255).astype(np.uint8) vidwri.write(sr_image) print('Total time: {:.3f} seconds for {} frames'.format(total_times, total_frames)) print('Average time: {:.3f} seconds for each frame'.format(total_times / total_frames)) vidcap.release() vidwri.release() torch.set_grad_enabled(True) def main(): args = parser.parse_args() t = VideoTester(args.scale, args.model, args.dir_demo, arch=args.arch) t.test() if __name__ == '__main__': main()