File size: 5,009 Bytes
f8d2192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c875dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
license: mit
language:
- en
base_model:
- Ultralytics/YOLOv8
pipeline_tag: object-detection
tags:
- Ultralytics
- YOLOv8
- YOLOv8-Seg
---

# YOLOv8-Seg

This version of YOLOv8-Seg has been converted to run on the Axera NPU using **w8a16** quantization.

This model has been optimized with the following LoRA: 

Compatible with Pulsar2 version: 3.4

## Convert tools links:

For those who are interested in model conversion, you can try to export axmodel through 

- [The repo of AXera Platform](https://github.com/AXERA-TECH/ax-samples), which you can get the detial of guide

- [Pulsar2 Link, How to Convert ONNX to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/pulsar2/introduction.html) 


## Support Platform

- AX650
  - [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html)
  - [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html)
- AX630C
  - [爱芯派2](https://axera-pi-2-docs-cn.readthedocs.io/zh-cn/latest/index.html)
  - [Module-LLM](https://docs.m5stack.com/zh_CN/module/Module-LLM)
  - [LLM630 Compute Kit](https://docs.m5stack.com/zh_CN/core/LLM630%20Compute%20Kit)
  
|Chips|yolov8s-seg|
|--|--|
|AX650| 4.6 ms |
|AX630C| TBD ms |

## How to use

Download all files from this repository to the device

```

root@ax650:~/YOLOv8-Seg# tree
.
|-- ax650
|   `-- yolov8s-seg.axmodel
|-- ax_yolov8_seg
|-- football.jpg
`-- yolov8_seg_out.jpg
```

### Inference

Input image:
![](./football.jpg)

#### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro)

```
root@ax650:~/samples/AXERA-TECH/YOLOv8-Seg# ./ax_yolov8_seg -m ax650/yolov8s_seg.axmodel -i football.jpg
--------------------------------------
model file : ax650/yolov8s_seg.axmodel
image file : football.jpg
img_h, img_w : 640 640
--------------------------------------
Engine creating handle is done.
Engine creating context is done.
Engine get io info is done.
Engine alloc io is done.
Engine push input is done.
--------------------------------------

input size: 1
    name:   images [UINT8] [BGR]
        1 x 640 x 640 x 3


output size: 7
    name: /model.22/Concat_1_output_0 [FLOAT32]
        1 x 80 x 80 x 144

    name: /model.22/Concat_2_output_0 [FLOAT32]
        1 x 40 x 40 x 144

    name: /model.22/Concat_3_output_0 [FLOAT32]
        1 x 20 x 20 x 144

    name: /model.22/cv4.0/cv4.0.2/Conv_output_0 [FLOAT32]
        1 x 80 x 80 x 32

    name: /model.22/cv4.1/cv4.1.2/Conv_output_0 [FLOAT32]
        1 x 40 x 40 x 32

    name: /model.22/cv4.2/cv4.2.2/Conv_output_0 [FLOAT32]
        1 x 20 x 20 x 32

    name:  output1 [FLOAT32]
        1 x 32 x 160 x 160

post process cost time:16.21 ms
--------------------------------------
Repeat 1 times, avg time 4.69 ms, max_time 4.69 ms, min_time 4.69 ms
--------------------------------------
detection num: 8
 0:  92%, [1354,  340, 1629, 1035], person
 0:  91%, [   5,  359,  314, 1108], person
 0:  91%, [ 759,  220, 1121, 1153], person
 0:  88%, [ 490,  476,  661,  999], person
32:  73%, [1233,  877, 1286,  923], sports ball
32:  63%, [ 772,  888,  828,  937], sports ball
32:  63%, [ 450,  882,  475,  902], sports ball
 0:  55%, [1838,  690, 1907,  811], person
--------------------------------------
```

Output image:
![](./yolov8_seg_out.jpg)


#### Inference with M.2 Accelerator card

```
(base) axera@raspberrypi:~/lhj/YOLOv8-Seg $ ./axcl_aarch64/axcl_yolov8_seg -m ax650/yolov8s_seg.axmodel -i football.jpg 
--------------------------------------
model file : ax650/yolov8s_seg.axmodel
image file : football.jpg
img_h, img_w : 640 640
--------------------------------------
axclrtEngineCreateContextt is done. 
axclrtEngineGetIOInfo is done. 

grpid: 0

input size: 1
    name:   images 
        1 x 640 x 640 x 3


output size: 7
    name: /model.22/Concat_1_output_0 
        1 x 80 x 80 x 144

    name: /model.22/Concat_2_output_0 
        1 x 40 x 40 x 144

    name: /model.22/Concat_3_output_0 
        1 x 20 x 20 x 144

    name: /model.22/cv4.0/cv4.0.2/Conv_output_0 
        1 x 80 x 80 x 32

    name: /model.22/cv4.1/cv4.1.2/Conv_output_0 
        1 x 40 x 40 x 32

    name: /model.22/cv4.2/cv4.2.2/Conv_output_0 
        1 x 20 x 20 x 32

    name:  output1 
        1 x 32 x 160 x 160

==================================================

Engine push input is done. 
--------------------------------------
post process cost time:3.67 ms 
--------------------------------------
Repeat 1 times, avg time 4.85 ms, max_time 4.85 ms, min_time 4.85 ms
--------------------------------------
detection num: 8
 0:  92%, [1354,  340, 1629, 1035], person
 0:  91%, [   5,  359,  314, 1108], person
 0:  91%, [ 759,  220, 1121, 1153], person
 0:  88%, [ 490,  476,  661,  999], person
32:  73%, [1233,  877, 1286,  923], sports ball
32:  63%, [ 772,  888,  828,  937], sports ball
32:  63%, [ 450,  882,  475,  902], sports ball
 0:  55%, [1838,  690, 1907,  811], person
--------------------------------------
```

Output image:
![](./yolov8_seg_axcl_out.jpg)