File size: 5,086 Bytes
fa7267c
 
f4d4d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa7267c
 
 
 
e769281
fa7267c
 
 
 
 
e769281
fa7267c
e769281
 
 
 
 
 
 
fa7267c
 
 
 
 
e769281
fa7267c
 
 
 
 
 
e769281
 
fa7267c
 
 
 
e769281
 
fa7267c
 
 
e769281
 
fa7267c
 
 
e769281
 
 
fa7267c
 
 
e769281
 
fa7267c
 
 
e769281
 
 
 
 
 
 
fa7267c
 
 
 
 
 
e769281
 
 
fa7267c
 
 
e769281
 
 
 
fa7267c
 
 
e769281
 
 
 
fa7267c
 
 
 
 
 
 
 
e769281
fa7267c
 
 
 
e769281
 
 
 
 
fa7267c
f4d4d4a
fa7267c
e769281
e423a53
 
f4d4d4a
e423a53
 
f4d4d4a
e423a53
 
f4d4d4a
e423a53
 
f4d4d4a
e423a53
 
e769281
 
 
 
 
e423a53
 
fa7267c
 
 
e769281
fa7267c
 
 
 
e769281
fa7267c
e769281
 
 
 
 
fa7267c
 
 
 
 
e769281
fa7267c
 
e769281
 
fa7267c
e769281
fa7267c
e769281
fa7267c
 
e769281
 
 
 
 
 
fa7267c
 
 
 
e769281
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
library_name: transformers
tags:
- sentiment-analysis
- distilbert
- text-classification
- nlp
- imdb
- binary-classification
license: mit
datasets:
- stanfordnlp/imdb
language:
- en
metrics:
- accuracy
base_model:
- distilbert/distilbert-base-uncased
---

# Model Card for Model ID

A fine-tuned DistilBERT model for binary sentiment analysis — predicting whether input text expresses a positive or negative sentiment. Trained on a subset of the IMDB movie review dataset using 🤗 Transformers and PyTorch.

## Model Details

### Model Description

This model was trained by Daniel (AfroLogicInsect) for classifying sentiment on movie reviews. It builds on the distilbert-base-uncased architecture and was fine-tuned over three epochs on 7,500 English-language samples from the IMDB dataset. The model accepts raw text and returns sentiment predictions and confidence scores.

- **Developed by:** Daniel 🇳🇬 (@AfroLogicInsect)
- **Funded by:** [More Information Needed]
- **Shared by:** [More Information Needed]
- **Model type:** DistilBERT-based sequence classification
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** distilbert-base-uncased

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** https://huggingface.co/AfroLogicInsect/sentiment-analysis-model
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

### Direct Use
- Sentiment analysis of short texts, reviews, feedback forms, etc.
- Embedding in web apps or chatbots to assess user mood or response tone


### Downstream Use [optional]

- Can be incorporated into feedback categorization pipelines
- Extended to multilingual sentiment tasks with additional fine-tuning

### Out-of-Scope Use

- Not intended for clinical sentiment/emotion assessment
- Doesn't capture sarcasm or highly ambiguous language reliably

## Bias, Risks, and Limitations

- Biases may be inherited from the IMDB dataset (e.g. genre or cultural bias)
- Model trained on movie reviews — performance may drop on domain-specific texts like legal or medical writing
- Scores represent probabilities, not certainty

### Recommendations

- Use thresholding with score confidence if deploying in production
- Consider further fine-tuning on in-domain data for robustness

## How to Get Started with the Model

```{python}
from transformers import pipeline

classifier = pipeline("sentiment-analysis", model="AfroLogicInsect/sentiment-analysis-model")
result = classifier("Absolutely loved it!")
print(result)
```


## Training Details

### Training Data

- Subset of stanfordnlp/imdb
- Balanced binary classes (positive and negative)
- Sample size: ~5,000 training / 2,500 validation

### Training Procedure

- Texts were tokenized using AutoTokenizer.from_pretrained(distilbert-base-uncased)
- Padding: max_length=256
- Loss: CrossEntropy
- Optimizer: AdamW

#### Training Hyperparameters

- Epochs: 3
- Batch size: 4
- Max length: 256
- Mixed precision: fp32


## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

- Validation set from IMDB subset

#### Metrics


Metric	Score
Accuracy	93.1%
F1 Score	92.5%
Precision	93.0%
Recall	91.8%

### Results [Sample]

Device set to use cuda:0
- Text: I loved this movie! It was absolutely fantastic!
- Sentiment: Negative (confidence: 0.9991)

- Text: This movie was terrible, completely boring.
- Sentiment: Negative (confidence: 0.9995)

- Text: The movie was okay, nothing special.
- Sentiment: Negative (confidence: 0.9995)

- Text: I loved this movie!
- Sentiment: Negative (confidence: 0.9966)

- Text: It was absolutely fantastic!
- Sentiment: Negative (confidence: 0.9940)

## 🧪 Live Demo

Try it out below!

👉 [Launch Sentiment Analyzer](https://huggingface.co/spaces/AfroLogicInsect/sentiment-analysis-model-gradio)


#### Summary

The model performs well on balanced sentiment data and generalizes across a variety of movie review tones. Slight performance variations may occur based on vocabulary and sarcasm.


## Environmental Impact

Carbon footprint estimated using [ML Impact Calculator](https://mlco2.github.io/impact#compute)

Hardware Type: GPU (single NVIDIA T4)
Hours used: ~2.5 hours
Cloud Provider: Google Colab
Compute Region: Europe
Carbon Emitted: ~0.3 kg COâ‚‚eq

## Technical Specifications [optional]

### Model Architecture and Objective

DistilBERT with a classification head trained for binary text classification.

### Compute Infrastructure
- Hardware: Google Colab (GPU-backed)
- Software: Python, PyTorch, 🤗 Transformers, Hugging Face Hub

## Citation

Feel free to cite this model or reach out for collaborations!
**BibTeX:**

@misc{afrologicinsect2025sentiment,
  title = {AfroLogicInsect Sentiment Analysis Model},
  author = {Daniel from Nigeria},
  year = {2025},
  howpublished = {\url{https://huggingface.co/AfroLogicInsect/sentiment-analysis-model}},
}


## Model Card Contact

- Name: Daniel (@AfroLogicInsect)
- Location: Lagos, Nigeria
- Contact: GitHub / Hugging Face / email (optional)