File size: 7,700 Bytes
8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 8de1176 d27c613 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
---
library_name: transformers
tags:
- sentiment-analysis
- distilbert
- text-classification
- nlp
- imdb
- binary-classification
license: mit
datasets:
- stanfordnlp/imdb
language:
- en
metrics:
- accuracy
base_model:
- distilbert/distilbert-base-uncased
---
# Model Card for Model ID
A fine-tuned DistilBERT model for binary sentiment analysis β predicting whether input text expresses a positive or negative sentiment. Trained on a subset of the IMDB movie review dataset using π€ Transformers and PyTorch.
## Model Details
### Model Description
This model was trained by Daniel (AfroLogicInsect) for classifying sentiment on movie reviews. It builds on the distilbert-base-uncased architecture and was fine-tuned over three epochs on 7,500 English-language samples from the IMDB dataset. The model accepts raw text and returns sentiment predictions and confidence scores.
- **Developed by:** Daniel π³π¬ (@AfroLogicInsect)
- **Funded by:** [More Information Needed]
- **Shared by:** [More Information Needed]
- **Model type:** DistilBERT-based sequence classification
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** distilbert-base-uncased
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://huggingface.co/AfroLogicInsect/sentiment-analysis-model_v2
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
### Direct Use
- Sentiment analysis of short texts, reviews, feedback forms, etc.
- Embedding in web apps or chatbots to assess user mood or response tone
### Downstream Use [optional]
- Can be incorporated into feedback categorization pipelines
- Extended to multilingual sentiment tasks with additional fine-tuning
### Out-of-Scope Use
- Not intended for clinical sentiment/emotion assessment
- Doesn't capture sarcasm or highly ambiguous language reliably
## Bias, Risks, and Limitations
- Biases may be inherited from the IMDB dataset (e.g. genre or cultural bias)
- Model trained on movie reviews β performance may drop on domain-specific texts like legal or medical writing
- Scores represent probabilities, not certainty
### Recommendations
- Use thresholding with score confidence if deploying in production
- Consider further fine-tuning on in-domain data for robustness
## How to Get Started with the Model
```{python}
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="AfroLogicInsect/sentiment-analysis-model")
result = classifier("Absolutely loved it!")
print(result)
```
## Training Details
### Training Data
- Subset of stanfordnlp/imdb
- Balanced binary classes (positive and negative)
- Sample size: ~15,000 training / 1,500 validation
#### Training Hyperparameters
##### Training arguments
training_args = TrainingArguments(
output_dir = "./sentiment-model-v2",
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
learning_rate=2e-5, # Explicit learning rate
warmup_steps=100, # Reduced warmup
weight_decay=0.01,
logging_dir="./logs",
logging_steps=50,
eval_strategy="steps",
eval_steps=200, # < 500: More frequent evaluation
save_strategy="steps",
save_steps=200, # match eval_steps
load_best_model_at_end=True,
metric_for_best_model="f1",
greater_is_better=True,
seed=42, # Reproducibility
dataloader_drop_last=False,
#remove_unused_columns=False,
)
##### Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
- Validation set from IMDB subset
#### Metrics
Step Training Loss Validation Loss Accuracy F1 Precision Recall
200 0.391100 0.344377 0.850000 0.863554 0.791991 0.949333
400 0.299000 0.304345 0.876000 0.865994 0.942006 0.801333
600 0.301700 0.298436 0.881333 0.888331 0.838863 0.944000
800 0.280700 0.260090 0.893333 0.897698 0.862408 0.936000
1000 0.173100 0.288142 0.899333 0.897766 0.911967 0.884000
1200 0.203700 0.263154 0.904667 0.905486 0.897772 0.913333
1400 0.186100 0.275240 0.904000 0.901370 0.926761 0.877333
1600 0.130400 0.291926 0.904667 0.903313 0.916324 0.890667
1800 0.158900 0.304814 0.908000 0.908488 0.903694 0.913333
2000 0.087900 0.332357 0.904000 0.905263 0.893506 0.917333
2200 0.119300 0.339073 0.908667 0.910399 0.893453 0.928000
2400 0.178100 0.366023 0.903333 0.905660 0.884371 0.928000
2600 0.072100 0.372015 0.909333 0.908356 0.918256 0.898667
2800 0.097700 0.368600 0.906667 0.908016 0.895078 0.921333
Final evaluation results: {
'eval_loss': 0.3390733003616333,
'eval_accuracy': 0.9086666666666666,
'eval_f1': 0.9103989535644212,
'eval_precision': 0.8934531450577664,
'eval_recall': 0.928,
'eval_runtime': 9.9181,
'eval_samples_per_second': 151.239,
'eval_steps_per_second': 9.478, 'epoch': 3.0
}
### Results [Sample]
#### ============================================================
#### TESTING FIXED MODEL
#### ============================================================
Testing fixed model...
Text Expected Predicted Confidence Match
==========================================================================================
I absolutely loved this movie! It was fantastic! positive positive 0.9959 β
This movie was terrible and boring. negative negative 0.9969 β
Amazing acting and great story! positive positive 0.9959 β
Worst film I've ever seen. negative negative 0.9950 β
Incredible cinematography and soundtrack. positive positive 0.9950 β
Complete waste of time and money. negative negative 0.9957 β
The movie was okay, nothing special. neutral negative 0.9915 N/A
I enjoyed most of it. positive positive 0.9912 β
Pretty disappointing overall. negative negative 0.9936 β
Masterpiece of cinema! positive positive 0.9939 β
Overall Accuracy: 100.0% (9/9)
## π§ͺ Live Demo
Try it out below!
π [Launch Sentiment Analyzer](https://huggingface.co/spaces/AfroLogicInsect/sentiment-analysis-model-gradio)
#### Summary
The model performs well on balanced sentiment data and generalizes across a variety of movie review tones. Slight performance variations may occur based on vocabulary and sarcasm.
## Environmental Impact
Carbon footprint estimated using [ML Impact Calculator](https://mlco2.github.io/impact#compute)
Hardware Type: GPU (single NVIDIA T4)
Hours used: ~2.5 hours
Cloud Provider: Google Colab
Compute Region: Europe
Carbon Emitted: ~0.3 kg COβeq
## Technical Specifications [optional]
### Model Architecture and Objective
DistilBERT with a classification head trained for binary text classification.
### Compute Infrastructure
- Hardware: Google Colab (GPU-backed)
- Software: Python, PyTorch, π€ Transformers, Hugging Face Hub
## Citation
**BibTeX:**
[@misc{afrologicinsect2025sentiment,
title = {AfroLogicInsect Sentiment Analysis Model},
author = {Akan Daniel},
year = {2025},
howpublished = {\url{https://huggingface.co/AfroLogicInsect/sentiment-analysis-model_v2}},
}]
## Model Card Contact
- Name: Daniel (@AfroLogicInsect)
- Location: Lagos, Nigeria
- Contact: GitHub / Hugging Face / email (danielamahtoday@gmail.com) |