File size: 8,585 Bytes
c937797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from io import BytesIO
from typing import Any, Dict, Optional, List
import torch
from PIL import Image
from sentence_transformers.models import Transformer as BaseTransformer
from transformers import AutoModelForVision2Seq, AutoProcessor


class MultiModalTransformer(BaseTransformer):
    def __init__(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
        tokenizer_args: Optional[Dict[str, Any]] = None,
        min_image_tokens: int = 256,
        max_image_tokens: int = 1280,
        max_length: int = 1800,
        **kwargs,
    ):
        super().__init__(model_name_or_path, **kwargs)
        if tokenizer_args is None:
            tokenizer_args = {}
        tokenizer_args.pop("trust_remote_code", None)

        # Initialize processor
        min_pixels = min_image_tokens * 28 * 28
        max_pixels = max_image_tokens * 28 * 28
        self.processor = AutoProcessor.from_pretrained(
            model_name_or_path, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
        )
        self.processor.tokenizer.padding_side = 'right'
        self.sep = ' '
        self.max_length = max_length
        self.normalize = True

    def _load_model(
            self,
            model_name_or_path: str,
            config,
            cache_dir: str,
            backend: str,
            is_peft_model: bool,
            **model_args,
    ) -> None:
        model_args.pop("trust_remote_code", None)
        self.auto_model = AutoModelForVision2Seq.from_pretrained(
            model_name_or_path, torch_dtype=torch.float16, **model_args
        )

    def forward(
        self, features: Dict[str, torch.Tensor], **kwargs
    ) -> Dict[str, torch.Tensor]:       
        if features.get("inputs_embeds", None) is None:
            features["inputs_embeds"] = self.auto_model.base_model.embed_tokens(features["input_ids"])
            if features.get("pixel_values", None) is not None:
                features["pixel_values"] = features["pixel_values"].type(self.auto_model.visual.get_dtype())
                image_embeds = self.auto_model.visual(
                    features["pixel_values"], grid_thw=features["image_grid_thw"]
                )
                image_mask = features["input_ids"] == self.auto_model.config.image_token_id
                features["inputs_embeds"][image_mask] = image_embeds
                # features.pop("pixel_values")
                # features.pop("image_grid_thw")
        # features.pop("input_ids")
        inputs = {k: v for k, v in features.items() if k in 'position_ids,attention_mask,inputs_embeds'}
        outputs = self.auto_model.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True,
            # **kwargs
        )
        # pooling_mask = features["attention_mask"] if features.get("pooling_mask", None) is None else features["pooling_mask"]
        # left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0])  # TODO
        # if left_padding:
        #     embeddings = outputs.last_hidden_state
        # else:
        #     sequence_lengths = pooling_mask.sum(dim=1) - 1
        #     embeddings = outputs.last_hidden_state[torch.arange(
        #         outputs.last_hidden_state.shape[0], device=outputs.last_hidden_state.device
        #     ), sequence_lengths]
        features.update({"token_embeddings": outputs.last_hidden_state})
        return features 

    def tokenize(self, texts: List[List[Dict[str, Any]]] | List[str]) -> Dict[str, torch.Tensor]:
        default_instruction = 'You are a helpful assistant.'

        all_texts, all_images = list(), list()
        for item in texts:
            if isinstance(item, str):
                txt, img, inst = item, None, default_instruction
            elif isinstance(item, dict):
                txt = item.get('text', None)
                img = item.get('image', None)
                inst = item.get('prompt', default_instruction)
            else:
                raise RuntimeError(f'Input format not supported! {item=}')

            input_str = ''
            if img is None:
                all_images = None  # All examples in the same batch are consistent
                # or will have ValueError: Could not make a flat list of images from xxxx
            else:
                input_str += '<|vision_start|><|image_pad|><|vision_end|>'
                img = fetch_image(img)
                all_images.append(img)
            if txt is not None:
                input_str += txt
            msg = f'<|im_start|>system\n{inst}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
            all_texts.append(msg)

        inputs = self.processor(
            text=all_texts,
            images=all_images,
            padding="longest",
            truncation=True,
            max_length=self.max_seq_length,
            return_tensors='pt'
        )
        return inputs


### Copied from qwen_vl_utils.vision_process.py
import base64
from io import BytesIO
import requests

IMAGE_FACTOR = 28
MIN_PIXELS = 4 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200


def round_by_factor(number: int, factor: int) -> int:
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
    return round(number / factor) * factor


def ceil_by_factor(number: int, factor: int) -> int:
    """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
    return math.ceil(number / factor) * factor


def floor_by_factor(number: int, factor: int) -> int:
    """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
    return math.floor(number / factor) * factor


def smart_resize(
    height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
    """
    Rescales the image so that the following conditions are met:

    1. Both dimensions (height and width) are divisible by 'factor'.

    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

    3. The aspect ratio of the image is maintained as closely as possible.
    """
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = floor_by_factor(height / beta, factor)
        w_bar = floor_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = ceil_by_factor(height * beta, factor)
        w_bar = ceil_by_factor(width * beta, factor)

    if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
        logging.warning(
            f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
        )
        if h_bar > w_bar:
            h_bar = w_bar * MAX_RATIO
        else:
            w_bar = h_bar * MAX_RATIO
    return h_bar, w_bar


def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
    image_obj = None
    if isinstance(image, Image.Image):
        image_obj = image
    elif image.startswith("http://") or image.startswith("https://"):
        image_obj = Image.open(requests.get(image, stream=True).raw)
    elif image.startswith("file://"):
        image_obj = Image.open(image[7:])
    elif image.startswith("data:image"):
        if "base64," in image:
            _, base64_data = image.split("base64,", 1)
            data = base64.b64decode(base64_data)
            image_obj = Image.open(BytesIO(data))
    else:
        image_obj = Image.open(image)
    if image_obj is None:
        raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
    image = image_obj.convert("RGB")
    ## resize
    # if "resized_height" in ele and "resized_width" in ele:
    #     resized_height, resized_width = smart_resize(
    #         ele["resized_height"],
    #         ele["resized_width"],
    #         factor=size_factor,
    #     )
    # else:
    width, height = image.size
    # min_pixels = ele.get("min_pixels", MIN_PIXELS)
    # max_pixels = ele.get("max_pixels", MAX_PIXELS)
    resized_height, resized_width = smart_resize(
        height,
        width,
        factor=size_factor,
        min_pixels=MIN_PIXELS,
        max_pixels=MAX_PIXELS,
    )
    image = image.resize((resized_width, resized_height))

    return image
###