thenlper alvarobartt HF Staff commited on
Commit
e7f32e3
·
verified ·
1 Parent(s): bc02f0a

Add Text Embeddings Inference (TEI) tag & snippet (#17)

Browse files

- Add Text Embeddings Inference (TEI) tag & snippet (8afed724dfb37107ce6b9a63a8aff016919bdb24)


Co-authored-by: Alvaro Bartolome <alvarobartt@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +42 -0
README.md CHANGED
@@ -12,6 +12,7 @@ tags:
12
  - mteb
13
  - embedding
14
  - transformers.js
 
15
  ---
16
 
17
  # gte-modernbert-base
@@ -131,6 +132,47 @@ const similarities = (await matmul(embeddings.slice([0, 1]), embeddings.slice([1
131
  console.log(similarities.tolist()); // [[42.89077377319336, 71.30916595458984, 33.66455841064453]]
132
  ```
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  ## Training Details
135
 
136
  The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)
 
12
  - mteb
13
  - embedding
14
  - transformers.js
15
+ - text-embeddings-inference
16
  ---
17
 
18
  # gte-modernbert-base
 
132
  console.log(similarities.tolist()); // [[42.89077377319336, 71.30916595458984, 33.66455841064453]]
133
  ```
134
 
135
+ Additionally, you can also deploy `Alibaba-NLP/gte-modernbert-base` with [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) as follows:
136
+
137
+ - CPU
138
+
139
+ ```bash
140
+ docker run --platform linux/amd64 \
141
+ -p 8080:80 \
142
+ -v $PWD/data:/data \
143
+ --pull always \
144
+ ghcr.io/huggingface/text-embeddings-inference:cpu-1.7 \
145
+ --model-id Alibaba-NLP/gte-modernbert-base
146
+ ```
147
+
148
+ - GPU
149
+
150
+ ```bash
151
+ docker run --gpus all \
152
+ -p 8080:80 \
153
+ -v $PWD/data:/data \
154
+ --pull always \
155
+ ghcr.io/huggingface/text-embeddings-inference:1.7 \
156
+ --model-id Alibaba-NLP/gte-modernbert-base
157
+ ```
158
+
159
+ Then you can send requests to the deployed API via the OpenAI-compatible `v1/embeddings` route (more information about the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings)):
160
+
161
+ ```bash
162
+ curl https://0.0.0.0:8080/v1/embeddings \
163
+ -H "Content-Type: application/json" \
164
+ -d '{
165
+ "input": [
166
+ "what is the capital of China?",
167
+ "how to implement quick sort in python?",
168
+ "Beijing",
169
+ "sorting algorithms"
170
+ ],
171
+ "model": "Alibaba-NLP/gte-modernbert-base",
172
+ "encoding_format": "float"
173
+ }'
174
+ ```
175
+
176
  ## Training Details
177
 
178
  The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)