File size: 16,016 Bytes
f5a01c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# -*- coding: utf-8 -*-
"""text_classification.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1D25W7EYF5v1a0FoSHKAcyVhwMMIU6yg4
"""

!pip install transformers datasets
!pip install torch

# Ultra-Simple Arabic Product Classifier with Enhanced Training
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import joblib
import numpy as np
from collections import Counter

# Load and preprocess your data
print("Loading and preprocessing data...")
df = pd.read_excel('/content/Copy ofمنتجات مقاهي (1).xlsx', sheet_name='products')
df = df[['اسم المنتج', 'التصنيف المحاسبي']].dropna()

# Prepare text and labels
label_encoder = LabelEncoder()
labels = label_encoder.fit_transform(df['التصنيف المحاسبي'])
texts = df['اسم المنتج'].tolist()

print(f"Loaded {len(texts)} products with {len(set(labels))} unique categories.")
print(f"Categories: {list(label_encoder.classes_)}")

# Check class distribution and handle single-sample classes
from collections import Counter
label_counts = Counter(labels)
print(f"Class distribution:")
for label_id, count in sorted(label_counts.items()):
    label_name = label_encoder.inverse_transform([label_id])[0]
    print(f"  {label_name}: {count} samples")

# Separate single-sample classes from multi-sample classes
single_sample_mask = np.array([label_counts[label] == 1 for label in labels])
multi_sample_mask = ~single_sample_mask

# Get indices for single and multi sample data
single_indices = np.where(single_sample_mask)[0]
multi_indices = np.where(multi_sample_mask)[0]

print(f"\nSingle-sample classes: {np.sum(single_sample_mask)} samples")
print(f"Multi-sample classes: {np.sum(multi_sample_mask)} samples")

if np.sum(multi_sample_mask) > 0:
    # Split multi-sample data with stratification
    multi_texts = [texts[i] for i in multi_indices]
    multi_labels = [labels[i] for i in multi_indices]

    train_texts, val_texts, train_labels, val_labels = train_test_split(
        multi_texts, multi_labels, test_size=0.2, random_state=42, stratify=multi_labels
    )

    # Add single-sample data to training set (can't split them)
    if np.sum(single_sample_mask) > 0:
        single_texts = [texts[i] for i in single_indices]
        single_labels = [labels[i] for i in single_indices]

        train_texts.extend(single_texts)
        train_labels.extend(single_labels)

        print(f"Added {len(single_texts)} single-sample items to training set")
else:
    # If all classes have single samples, use simple split without stratification
    print("Warning: All or most classes have single samples. Using simple split.")
    train_texts, val_texts, train_labels, val_labels = train_test_split(
        texts, labels, test_size=0.2, random_state=42
    )

print(f"Training set: {len(train_texts)} samples")
print(f"Validation set: {len(val_texts)} samples")

# Load Arabic BERT
model_name = "asafaya/bert-base-arabic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(set(labels)))

# Define Enhanced Dataset class
class SimpleDataset(torch.utils.data.Dataset):
    def __init__(self, texts, labels, tokenizer):
        self.texts = texts
        self.labels = labels
        self.tokenizer = tokenizer

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        encoding = self.tokenizer(
            str(self.texts[idx]),
            truncation=True,
            padding='max_length',
            max_length=128,
            return_tensors='pt'
        )
        return {
            'input_ids': encoding['input_ids'].squeeze(0),
            'attention_mask': encoding['attention_mask'].squeeze(0),
            'labels': torch.tensor(self.labels[idx], dtype=torch.long)
        }

# Create datasets
train_dataset = SimpleDataset(train_texts, train_labels, tokenizer)
val_dataset = SimpleDataset(val_texts, val_labels, tokenizer)

# Define compute metrics function for evaluation
def compute_metrics(eval_pred):
    predictions, labels = eval_pred
    predictions = np.argmax(predictions, axis=1)
    accuracy = accuracy_score(labels, predictions)
    return {'accuracy': accuracy}

# Enhanced Training setup with evaluation
training_args = TrainingArguments(
    output_dir='./model',
    num_train_epochs=50,
    per_device_train_batch_size=16,  # زودت الـ batch size من 8 لـ 16
    per_device_eval_batch_size=16,   # batch size للتقييم
    eval_strategy="epoch",           # تقييم بعد كل epoch
    save_strategy="epoch",           # حفظ بعد كل epoch
    logging_steps=10,                # تسجيل أكثر تكراراً
    save_total_limit=2,              # الاحتفاظ بأفضل 2 نماذج فقط
    load_best_model_at_end=True,     # تحميل أفضل نموذج في النهاية
    metric_for_best_model="eval_accuracy",  # المقياس لاختيار أفضل نموذج
    greater_is_better=True,          # كلما زادت الدقة كان أفضل
    report_to=None,
    warmup_steps=100,                # خطوات إحماء للتدريب
    weight_decay=0.01,               # تنظيم لمنع الـ overfitting
    learning_rate=2e-5,              # معدل تعلم محسن
)

# Enhanced Trainer instance with evaluation
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=val_dataset,        # إضافة بيانات التقييم
    tokenizer=tokenizer,
    compute_metrics=compute_metrics  # إضافة وظيفة حساب المقاييس
)

# Start training with evaluation
print("Training started with evaluation...")
trainer.train()

# Save model, tokenizer, and label encoder
trainer.save_model('./model')
tokenizer.save_pretrained('./model')
joblib.dump(label_encoder, './model/labels.pkl')

print("Training complete! Model saved to './model'")

# Enhanced prediction function with batch processing capability
def predict(text):
    """Predict single product classification"""
    tokenizer = AutoTokenizer.from_pretrained('./model')
    model = AutoModelForSequenceClassification.from_pretrained('./model')
    label_encoder = joblib.load('./model/labels.pkl')

    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
    with torch.no_grad():
        outputs = model(**inputs)

    predicted_id = outputs.logits.argmax().item()
    confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
    classification = label_encoder.inverse_transform([predicted_id])[0]

    return classification, confidence

def predict_batch(texts):
    """Predict multiple products at once for faster processing"""
    tokenizer = AutoTokenizer.from_pretrained('./model')
    model = AutoModelForSequenceClassification.from_pretrained('./model')
    label_encoder = joblib.load('./model/labels.pkl')

    inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=128)
    with torch.no_grad():
        outputs = model(**inputs)

    predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
    confidences = torch.nn.functional.softmax(outputs.logits, dim=-1).max(dim=-1)[0].cpu().numpy()
    classifications = label_encoder.inverse_transform(predictions)

    return list(zip(classifications, confidences))

# Evaluate on validation set
print("\nEvaluating on validation set...")
val_predictions = []
val_confidences = []

for text in val_texts:
    pred, conf = predict(text)
    val_predictions.append(pred)
    val_confidences.append(conf)

# Convert back to numeric for comparison
val_pred_numeric = label_encoder.transform(val_predictions)
accuracy = accuracy_score(val_labels, val_pred_numeric)
print(f"Validation Accuracy: {accuracy:.4f}")

# Detailed classification report
val_true_labels = label_encoder.inverse_transform(val_labels)
print("\nDetailed Classification Report:")
print(classification_report(val_true_labels, val_predictions, target_names=label_encoder.classes_))

# Test examples
test_products = [
    "نادك حليب طويل الأجل 1 لتر",
    "قهوة عربية محمصة",
    "شاي أحمر ليبتون",
    "عصير برتقال طبيعي"
]

print("\n" + "="*50)
print("Testing on sample products:")
print("="*50)

for product in test_products:
    result, confidence = predict(product)
    print(f"Product: {product}")
    print(f"Classification: {result}")
    print(f"Confidence: {confidence:.3f}")
    print("-" * 30)

# Batch prediction example
print("\nBatch prediction example:")
batch_results = predict_batch(test_products)
for product, (classification, confidence) in zip(test_products, batch_results):
    print(f"{product} -> {classification} ({confidence:.3f})")

print(f"\nModel training complete!")
print(f"- Single prediction: predict('product name')")
print(f"- Batch prediction: predict_batch(['product1', 'product2', ...])")
print(f"- Validation accuracy: {accuracy:.4f}")
print(f"- Model saved to: './model'")

# Using the trained model (without retraining)
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import joblib

print("Loading trained model...")

# Load model and tools (only once)
try:
    tokenizer = AutoTokenizer.from_pretrained('./model')
    model = AutoModelForSequenceClassification.from_pretrained('./model')
    label_encoder = joblib.load('./model/labels.pkl')
    print("Model loaded successfully!")
    print(f"Number of available categories: {len(label_encoder.classes_)}")

    # Display available categories
    print("\nAvailable categories:")
    for i, category in enumerate(label_encoder.classes_, 1):
        print(f"{i:2d}. {category}")

except Exception as e:
    print(f"Error loading model: {e}")
    print("Make sure './model' folder exists and contains required files")
    exit()

# Basic classification function
def classify_product(product_name):
    """Classify a single product"""
    try:
        # Prepare text
        inputs = tokenizer(
            product_name,
            return_tensors="pt",
            truncation=True,
            padding=True,
            max_length=128
        )

        # Prediction
        with torch.no_grad():
            outputs = model(**inputs)

        # Extract result
        predicted_id = outputs.logits.argmax().item()
        confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
        classification = label_encoder.inverse_transform([predicted_id])[0]

        return {
            'product': product_name,
            'classification': classification,
            'confidence': confidence,
            'success': True
        }

    except Exception as e:
        return {
            'product': product_name,
            'classification': None,
            'confidence': 0,
            'success': False,
            'error': str(e)
        }

# Function to classify multiple products
def classify_multiple_products(product_list):
    """Classify a list of products"""
    results = []

    print(f"Classifying {len(product_list)} products...")

    for i, product in enumerate(product_list, 1):
        result = classify_product(product)
        results.append(result)

        if result['success']:
            print(f"{i:3d}. {product}")
            print(f"     → {result['classification']}")
            print(f"     → Confidence: {result['confidence']:.3f}")
        else:
            print(f"{i:3d}. {product} - Error: {result['error']}")
        print()

    return results

# Test examples
test_products = [
    "نادك حليب طويل الأجل 1 لتر",
    "قهوة عربية محمصة",
    "شاي أحمر ليبتون",
    "منظف أرضيات فلاش",
    "سكر أبيض ناعم",
    "عصير برتقال طبيعي"
]

print("\n" + "="*60)
print("Testing model on sample products")
print("="*60)

# Classify test products
test_results = classify_multiple_products(test_products)

# Quick statistics
successful_predictions = [r for r in test_results if r['success']]
avg_confidence = sum(r['confidence'] for r in successful_predictions) / len(successful_predictions)

print("="*60)
print("Results summary:")
print(f"Successfully classified {len(successful_predictions)} products")
print(f"Average confidence level: {avg_confidence:.3f}")

# Display unique classifications
unique_classifications = set(r['classification'] for r in successful_predictions)
print(f"Number of categories used: {len(unique_classifications)}")
print("Categories:")
for classification in sorted(unique_classifications):
    count = sum(1 for r in successful_predictions if r['classification'] == classification)
    print(f"   • {classification} ({count} products)")

print("\n" + "="*60)
print("Model ready for use!")
print("="*60)
print("Usage:")
print("result = classify_product('product name')")
print("print(f\"Classification: {result['classification']}\")")
print("print(f\"Confidence: {result['confidence']:.3f}\")")

print("\nFor multiple products:")
print("products = ['product 1', 'product 2', 'product 3']")
print("results = classify_multiple_products(products)")

test_product = 'عطر كروم ليجند للرجال او دي تواليت من ازارو 125 مل'
result, confidence = predict(test_product)

print(f"\nTest: {test_product}")
print(f"Result: {result}")
print(f"Confidence: {confidence:.3f}")

"""# Saving The model"""

# احفظ النموذج
model.save_pretrained('/content/my_model/')

# لاحقاً، لتحميله مرة أخرى:
from transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained('/content/my_model/')

!zip -r my_model.zip /content/my_model/

tokenizer.save_pretrained('/content/my_model')
model.save_pretrained('/content/my_model')
import joblib
joblib.dump(label_encoder, '/content/my_model/labels.pkl')

from google.colab import files
files.download('my_model.zip')

"""# Testing"""

!ls /content/my_model



from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import joblib

# Define the path where files are saved
save_path = '/content/my_model'

# Load the tokenizer, model, and label encoder
tokenizer = AutoTokenizer.from_pretrained(save_path)
model = AutoModelForSequenceClassification.from_pretrained(save_path)
label_encoder = joblib.load(f'{save_path}/labels.pkl')

def predict(text):
    # Preprocess the input text
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)

    # Perform inference
    with torch.no_grad():
        outputs = model(**inputs)

    # Get predicted class ID and confidence
    predicted_id = outputs.logits.argmax().item()
    confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()

    # Map the ID back to the label name
    classification = label_encoder.inverse_transform([predicted_id])[0]

    return classification, confidence

# Test a product
test_product = "نادك حليب طويل الأجل 1 لتر"
result, confidence = predict(test_product)

print(f"Test Product: {test_product}")
print(f"Predicted Category: {result}")
print(f"Confidence: {confidence:.3f}")

# Test a product
test_product = "زبادى"
result, confidence = predict(test_product)

print(f"Test Product: {test_product}")
print(f"Predicted Category: {result}")
print(f"Confidence: {confidence:.3f}")

# Test a product
test_product = "بترول"
result, confidence = predict(test_product)

print(f"Test Product: {test_product}")
print(f"Predicted Category: {result}")
print(f"Confidence: {confidence:.3f}")

from google.colab import files
uploaded = files.upload()