File size: 16,016 Bytes
f5a01c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
# -*- coding: utf-8 -*-
"""text_classification.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1D25W7EYF5v1a0FoSHKAcyVhwMMIU6yg4
"""
!pip install transformers datasets
!pip install torch
# Ultra-Simple Arabic Product Classifier with Enhanced Training
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import joblib
import numpy as np
from collections import Counter
# Load and preprocess your data
print("Loading and preprocessing data...")
df = pd.read_excel('/content/Copy ofمنتجات مقاهي (1).xlsx', sheet_name='products')
df = df[['اسم المنتج', 'التصنيف المحاسبي']].dropna()
# Prepare text and labels
label_encoder = LabelEncoder()
labels = label_encoder.fit_transform(df['التصنيف المحاسبي'])
texts = df['اسم المنتج'].tolist()
print(f"Loaded {len(texts)} products with {len(set(labels))} unique categories.")
print(f"Categories: {list(label_encoder.classes_)}")
# Check class distribution and handle single-sample classes
from collections import Counter
label_counts = Counter(labels)
print(f"Class distribution:")
for label_id, count in sorted(label_counts.items()):
label_name = label_encoder.inverse_transform([label_id])[0]
print(f" {label_name}: {count} samples")
# Separate single-sample classes from multi-sample classes
single_sample_mask = np.array([label_counts[label] == 1 for label in labels])
multi_sample_mask = ~single_sample_mask
# Get indices for single and multi sample data
single_indices = np.where(single_sample_mask)[0]
multi_indices = np.where(multi_sample_mask)[0]
print(f"\nSingle-sample classes: {np.sum(single_sample_mask)} samples")
print(f"Multi-sample classes: {np.sum(multi_sample_mask)} samples")
if np.sum(multi_sample_mask) > 0:
# Split multi-sample data with stratification
multi_texts = [texts[i] for i in multi_indices]
multi_labels = [labels[i] for i in multi_indices]
train_texts, val_texts, train_labels, val_labels = train_test_split(
multi_texts, multi_labels, test_size=0.2, random_state=42, stratify=multi_labels
)
# Add single-sample data to training set (can't split them)
if np.sum(single_sample_mask) > 0:
single_texts = [texts[i] for i in single_indices]
single_labels = [labels[i] for i in single_indices]
train_texts.extend(single_texts)
train_labels.extend(single_labels)
print(f"Added {len(single_texts)} single-sample items to training set")
else:
# If all classes have single samples, use simple split without stratification
print("Warning: All or most classes have single samples. Using simple split.")
train_texts, val_texts, train_labels, val_labels = train_test_split(
texts, labels, test_size=0.2, random_state=42
)
print(f"Training set: {len(train_texts)} samples")
print(f"Validation set: {len(val_texts)} samples")
# Load Arabic BERT
model_name = "asafaya/bert-base-arabic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(set(labels)))
# Define Enhanced Dataset class
class SimpleDataset(torch.utils.data.Dataset):
def __init__(self, texts, labels, tokenizer):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
encoding = self.tokenizer(
str(self.texts[idx]),
truncation=True,
padding='max_length',
max_length=128,
return_tensors='pt'
)
return {
'input_ids': encoding['input_ids'].squeeze(0),
'attention_mask': encoding['attention_mask'].squeeze(0),
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
}
# Create datasets
train_dataset = SimpleDataset(train_texts, train_labels, tokenizer)
val_dataset = SimpleDataset(val_texts, val_labels, tokenizer)
# Define compute metrics function for evaluation
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
accuracy = accuracy_score(labels, predictions)
return {'accuracy': accuracy}
# Enhanced Training setup with evaluation
training_args = TrainingArguments(
output_dir='./model',
num_train_epochs=50,
per_device_train_batch_size=16, # زودت الـ batch size من 8 لـ 16
per_device_eval_batch_size=16, # batch size للتقييم
eval_strategy="epoch", # تقييم بعد كل epoch
save_strategy="epoch", # حفظ بعد كل epoch
logging_steps=10, # تسجيل أكثر تكراراً
save_total_limit=2, # الاحتفاظ بأفضل 2 نماذج فقط
load_best_model_at_end=True, # تحميل أفضل نموذج في النهاية
metric_for_best_model="eval_accuracy", # المقياس لاختيار أفضل نموذج
greater_is_better=True, # كلما زادت الدقة كان أفضل
report_to=None,
warmup_steps=100, # خطوات إحماء للتدريب
weight_decay=0.01, # تنظيم لمنع الـ overfitting
learning_rate=2e-5, # معدل تعلم محسن
)
# Enhanced Trainer instance with evaluation
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset, # إضافة بيانات التقييم
tokenizer=tokenizer,
compute_metrics=compute_metrics # إضافة وظيفة حساب المقاييس
)
# Start training with evaluation
print("Training started with evaluation...")
trainer.train()
# Save model, tokenizer, and label encoder
trainer.save_model('./model')
tokenizer.save_pretrained('./model')
joblib.dump(label_encoder, './model/labels.pkl')
print("Training complete! Model saved to './model'")
# Enhanced prediction function with batch processing capability
def predict(text):
"""Predict single product classification"""
tokenizer = AutoTokenizer.from_pretrained('./model')
model = AutoModelForSequenceClassification.from_pretrained('./model')
label_encoder = joblib.load('./model/labels.pkl')
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
with torch.no_grad():
outputs = model(**inputs)
predicted_id = outputs.logits.argmax().item()
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
classification = label_encoder.inverse_transform([predicted_id])[0]
return classification, confidence
def predict_batch(texts):
"""Predict multiple products at once for faster processing"""
tokenizer = AutoTokenizer.from_pretrained('./model')
model = AutoModelForSequenceClassification.from_pretrained('./model')
label_encoder = joblib.load('./model/labels.pkl')
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=128)
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
confidences = torch.nn.functional.softmax(outputs.logits, dim=-1).max(dim=-1)[0].cpu().numpy()
classifications = label_encoder.inverse_transform(predictions)
return list(zip(classifications, confidences))
# Evaluate on validation set
print("\nEvaluating on validation set...")
val_predictions = []
val_confidences = []
for text in val_texts:
pred, conf = predict(text)
val_predictions.append(pred)
val_confidences.append(conf)
# Convert back to numeric for comparison
val_pred_numeric = label_encoder.transform(val_predictions)
accuracy = accuracy_score(val_labels, val_pred_numeric)
print(f"Validation Accuracy: {accuracy:.4f}")
# Detailed classification report
val_true_labels = label_encoder.inverse_transform(val_labels)
print("\nDetailed Classification Report:")
print(classification_report(val_true_labels, val_predictions, target_names=label_encoder.classes_))
# Test examples
test_products = [
"نادك حليب طويل الأجل 1 لتر",
"قهوة عربية محمصة",
"شاي أحمر ليبتون",
"عصير برتقال طبيعي"
]
print("\n" + "="*50)
print("Testing on sample products:")
print("="*50)
for product in test_products:
result, confidence = predict(product)
print(f"Product: {product}")
print(f"Classification: {result}")
print(f"Confidence: {confidence:.3f}")
print("-" * 30)
# Batch prediction example
print("\nBatch prediction example:")
batch_results = predict_batch(test_products)
for product, (classification, confidence) in zip(test_products, batch_results):
print(f"{product} -> {classification} ({confidence:.3f})")
print(f"\nModel training complete!")
print(f"- Single prediction: predict('product name')")
print(f"- Batch prediction: predict_batch(['product1', 'product2', ...])")
print(f"- Validation accuracy: {accuracy:.4f}")
print(f"- Model saved to: './model'")
# Using the trained model (without retraining)
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import joblib
print("Loading trained model...")
# Load model and tools (only once)
try:
tokenizer = AutoTokenizer.from_pretrained('./model')
model = AutoModelForSequenceClassification.from_pretrained('./model')
label_encoder = joblib.load('./model/labels.pkl')
print("Model loaded successfully!")
print(f"Number of available categories: {len(label_encoder.classes_)}")
# Display available categories
print("\nAvailable categories:")
for i, category in enumerate(label_encoder.classes_, 1):
print(f"{i:2d}. {category}")
except Exception as e:
print(f"Error loading model: {e}")
print("Make sure './model' folder exists and contains required files")
exit()
# Basic classification function
def classify_product(product_name):
"""Classify a single product"""
try:
# Prepare text
inputs = tokenizer(
product_name,
return_tensors="pt",
truncation=True,
padding=True,
max_length=128
)
# Prediction
with torch.no_grad():
outputs = model(**inputs)
# Extract result
predicted_id = outputs.logits.argmax().item()
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
classification = label_encoder.inverse_transform([predicted_id])[0]
return {
'product': product_name,
'classification': classification,
'confidence': confidence,
'success': True
}
except Exception as e:
return {
'product': product_name,
'classification': None,
'confidence': 0,
'success': False,
'error': str(e)
}
# Function to classify multiple products
def classify_multiple_products(product_list):
"""Classify a list of products"""
results = []
print(f"Classifying {len(product_list)} products...")
for i, product in enumerate(product_list, 1):
result = classify_product(product)
results.append(result)
if result['success']:
print(f"{i:3d}. {product}")
print(f" → {result['classification']}")
print(f" → Confidence: {result['confidence']:.3f}")
else:
print(f"{i:3d}. {product} - Error: {result['error']}")
print()
return results
# Test examples
test_products = [
"نادك حليب طويل الأجل 1 لتر",
"قهوة عربية محمصة",
"شاي أحمر ليبتون",
"منظف أرضيات فلاش",
"سكر أبيض ناعم",
"عصير برتقال طبيعي"
]
print("\n" + "="*60)
print("Testing model on sample products")
print("="*60)
# Classify test products
test_results = classify_multiple_products(test_products)
# Quick statistics
successful_predictions = [r for r in test_results if r['success']]
avg_confidence = sum(r['confidence'] for r in successful_predictions) / len(successful_predictions)
print("="*60)
print("Results summary:")
print(f"Successfully classified {len(successful_predictions)} products")
print(f"Average confidence level: {avg_confidence:.3f}")
# Display unique classifications
unique_classifications = set(r['classification'] for r in successful_predictions)
print(f"Number of categories used: {len(unique_classifications)}")
print("Categories:")
for classification in sorted(unique_classifications):
count = sum(1 for r in successful_predictions if r['classification'] == classification)
print(f" • {classification} ({count} products)")
print("\n" + "="*60)
print("Model ready for use!")
print("="*60)
print("Usage:")
print("result = classify_product('product name')")
print("print(f\"Classification: {result['classification']}\")")
print("print(f\"Confidence: {result['confidence']:.3f}\")")
print("\nFor multiple products:")
print("products = ['product 1', 'product 2', 'product 3']")
print("results = classify_multiple_products(products)")
test_product = 'عطر كروم ليجند للرجال او دي تواليت من ازارو 125 مل'
result, confidence = predict(test_product)
print(f"\nTest: {test_product}")
print(f"Result: {result}")
print(f"Confidence: {confidence:.3f}")
"""# Saving The model"""
# احفظ النموذج
model.save_pretrained('/content/my_model/')
# لاحقاً، لتحميله مرة أخرى:
from transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained('/content/my_model/')
!zip -r my_model.zip /content/my_model/
tokenizer.save_pretrained('/content/my_model')
model.save_pretrained('/content/my_model')
import joblib
joblib.dump(label_encoder, '/content/my_model/labels.pkl')
from google.colab import files
files.download('my_model.zip')
"""# Testing"""
!ls /content/my_model
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import joblib
# Define the path where files are saved
save_path = '/content/my_model'
# Load the tokenizer, model, and label encoder
tokenizer = AutoTokenizer.from_pretrained(save_path)
model = AutoModelForSequenceClassification.from_pretrained(save_path)
label_encoder = joblib.load(f'{save_path}/labels.pkl')
def predict(text):
# Preprocess the input text
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get predicted class ID and confidence
predicted_id = outputs.logits.argmax().item()
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).max().item()
# Map the ID back to the label name
classification = label_encoder.inverse_transform([predicted_id])[0]
return classification, confidence
# Test a product
test_product = "نادك حليب طويل الأجل 1 لتر"
result, confidence = predict(test_product)
print(f"Test Product: {test_product}")
print(f"Predicted Category: {result}")
print(f"Confidence: {confidence:.3f}")
# Test a product
test_product = "زبادى"
result, confidence = predict(test_product)
print(f"Test Product: {test_product}")
print(f"Predicted Category: {result}")
print(f"Confidence: {confidence:.3f}")
# Test a product
test_product = "بترول"
result, confidence = predict(test_product)
print(f"Test Product: {test_product}")
print(f"Predicted Category: {result}")
print(f"Confidence: {confidence:.3f}")
from google.colab import files
uploaded = files.upload()
|