File size: 2,944 Bytes
5af04ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386a902
5af04ad
386a902
5af04ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c7320
20c7a76
338a173
ed85db9
dcaca21
11aa0ee
b47fab0
e03ecde
92193bc
79f4d57
c508186
0e0342d
b290e0d
3d519b4
ef1dfb2
d3d4836
2f753cb
4283bca
c52f428
492c991
277e866
c399500
2dd5a80
5735b53
ef51f09
d30841c
c1ea66d
7bf9c4d
048c2a6
df7726c
55a1462
386a902
5af04ad
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Andronius17/answer_text
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Andronius17/answer_text

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.9377
- Validation Loss: 3.9762
- Epoch: 32

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 84, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 4.1663     | 3.9762          | 0     |
| 3.9427     | 3.9762          | 1     |
| 3.9499     | 3.9762          | 2     |
| 3.9448     | 3.9762          | 3     |
| 3.9429     | 3.9762          | 4     |
| 3.9460     | 3.9762          | 5     |
| 3.9372     | 3.9762          | 6     |
| 3.9375     | 3.9762          | 7     |
| 3.9359     | 3.9762          | 8     |
| 3.9398     | 3.9762          | 9     |
| 3.9488     | 3.9762          | 10    |
| 3.9429     | 3.9762          | 11    |
| 3.9482     | 3.9762          | 12    |
| 3.9383     | 3.9762          | 13    |
| 3.9415     | 3.9762          | 14    |
| 3.9377     | 3.9762          | 15    |
| 3.9440     | 3.9762          | 16    |
| 3.9415     | 3.9762          | 17    |
| 3.9374     | 3.9762          | 18    |
| 3.9327     | 3.9762          | 19    |
| 3.9477     | 3.9762          | 20    |
| 3.9424     | 3.9762          | 21    |
| 3.9375     | 3.9762          | 22    |
| 3.9419     | 3.9762          | 23    |
| 3.9459     | 3.9762          | 24    |
| 3.9463     | 3.9762          | 25    |
| 3.9410     | 3.9762          | 26    |
| 3.9414     | 3.9762          | 27    |
| 3.9458     | 3.9762          | 28    |
| 3.9479     | 3.9762          | 29    |
| 3.9370     | 3.9762          | 30    |
| 3.9465     | 3.9762          | 31    |
| 3.9377     | 3.9762          | 32    |


### Framework versions

- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3