from PIL import Image | |
import numpy as np | |
from tensorflow import keras | |
import os | |
def check(image): | |
# Load the image | |
# Preprocess the image | |
image = image.resize((300, 300)) # Resize the image to the desired dimensions | |
image = np.array(image) # Convert the image to a numpy array | |
image = image.astype('float32') / 255.0 # Normalize pixel values between 0 and 1 | |
# Expand dimensions and create a batch | |
image = np.expand_dims(image, axis=0) | |
model = keras.models.load_model('.\\image_classify.keras') | |
# Make predictions | |
predictions = model.predict(image) | |
return predictions | |