BAAI
/

File size: 8,658 Bytes
5644dea
e3bf9ba
 
 
 
 
5644dea
 
 
 
e3bf9ba
 
 
 
 
 
 
 
 
 
 
 
 
5644dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3bf9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5644dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
from typing import Optional, Tuple, Union, Dict
from PIL import Image
from functools import partial, reduce
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
import torch.distributed as dist
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.image_processing_utils import BatchFeature, get_size_dict
from transformers.image_transforms import (
    convert_to_rgb,
    normalize,
    rescale,
    resize,
    to_channel_dimension_format,
)
from transformers.image_utils import (
    ChannelDimension,
    PILImageResampling,
    to_numpy_array,
)

def rank0_print(*args):
    if dist.is_initialized():
        if dist.get_rank() == 0:
            print(f"Rank {dist.get_rank()}: ", *args)
    else:
        print(*args)


class BaseVisionTower(nn.Module):
    def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower_name
        self.delay_load = delay_load

    @abstractmethod
    def load_model(self, device_map=None):
        raise NotImplementedError("Subclasses must implement load_model")

    @abstractmethod
    def _forward(self, images):
        raise NotImplementedError("Subclasses must implement forward")

    def forward(self, images):
        if type(images) is list:
            image_features = [self._forward(image.unsqueeze(0)) for image in images]
        else:
            image_features = self._forward(images)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        # Dynamically infer the dtype from the first parameter, if not explicitly specified
        if hasattr(self.vision_tower, "dtype"):
            return self.vision_tower.dtype
        else:
            params = list(self.vision_tower.parameters())
            return (
                params[0].dtype if len(params) > 0 else torch.float32
            )  # Default to torch.float32 if no parameters

    @property
    def device(self):
        # Dynamically infer the device from the first parameter, if not explicitly specified
        if hasattr(self.vision_tower, "device"):
            return self.vision_tower.device
        else:
            params = list(self.vision_tower.parameters())
            return (
                params[0].device if len(params) > 0 else torch.device("cpu")
            )  # Default to CPU if no parameters
    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only
    @property
    def hidden_size(self):
        try:
            return self.config.hidden_size
        except:
            return self._hidden_size
            
class SigLipImageProcessor:
    def __init__(self, image_mean=(0.5, 0.5, 0.5), image_std=(0.5, 0.5, 0.5), size=(384, 384), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
        crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384}
        crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")

        self.image_mean = image_mean
        self.image_std = image_std
        self.size = size
        self.resample = resample
        self.rescale_factor = rescale_factor
        self.data_format = data_format
        self.crop_size = crop_size

    def preprocess(self, images, return_tensors):
        if isinstance(images, Image.Image):
            images = [images]
        else:
            # to adapt video data
            images = [to_numpy_array(image) for image in images]
            assert isinstance(images, list)

        transforms = [
            convert_to_rgb,
            to_numpy_array,
            partial(resize, size=self.size, resample=self.resample, data_format=self.data_format),
            partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
            partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
            partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
        ]

        images = reduce(lambda x, f: [*map(f, x)], transforms, images)
        
        data = {"pixel_values": images}

        return BatchFeature(data=data, tensor_type=return_tensors)
    
class SigLipVisionTower(BaseVisionTower):
    def __init__(self, vision_tower_name, vision_tower_cfg, delay_load=False):
        super(SigLipVisionTower, self).__init__(vision_tower_name, vision_tower_cfg, delay_load)
        
        # model_path = "google/siglip-so400m-patch14-384"
        # base_model_name, res, interp = model_path, 384, 576
        # self.vision_tower_name = base_model_name
        self.vision_tower_name, res, interp = vision_tower_name, 384, 576
        self._image_size = res if res is not None else 512
        self.unfreeze_mm_vision_tower = getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False)
            
        if not delay_load:
            rank0_print(f"Loading vision tower: {vision_tower_name}")
            self.load_model()
        elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
            # TODO: better detector is needed.
            rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
            self.load_model()
        elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
            rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
            self.load_model()
        else:
            self.cfg_only = self.config

    def load_model(self, device_map=None):
        self.vision_model = "siglip"
        # clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
        print(self.vision_tower_name)
        self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)

        # self.vision_tower = clip_model.visual.trunk
        self.vision_tower.output_tokens = True
        
        self._hidden_size = self.vision_tower.config.hidden_size

        self.image_processor = SigLipImageProcessor()
        
        del self.vision_tower.vision_model.encoder.layers[-1:]
        self.vision_tower.vision_model.head = nn.Identity()

        self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)

        self.is_loaded = True

    def _forward(self, images):
        with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
            image_features = self.vision_tower.forward(
                images.to(device=self.device, dtype=self.dtype),
                output_hidden_states=True,
            ).hidden_states[-1]
            return image_features
    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        for p in self.vision_tower.parameters():
            return p.dtype

    @property
    def device(self):
        for p in self.vision_tower.parameters():
            return p.device

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (336 // 14) ** 2

    @property
    def num_patches_per_side(self):
        #return self.config.image_size // self.config.patch_size
        return 336//14
        #return 27
        # return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]

    @property
    def image_size(self):
        return 384

def build_vision_tower(vision_tower_cfg, **kwargs):
    
    vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
    is_absolute_path_exists = os.path.exists(vision_tower)
    use_s2 = getattr(vision_tower_cfg, "s2", False)
    
    #print(getattr(vision_tower_cfg, "vision_tower", None))
    return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
    if getattr(vision_tower_cfg, "vision_tower", None) and "siglip" in getattr(vision_tower_cfg, "vision_tower", None).lower():
        #print('*************\n')
        return SigLipVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
    

    raise ValueError(f"Unknown vision tower: {vision_tower}")