|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union, Dict |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
import transformers |
|
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.generation.utils import GenerateOutput |
|
|
|
from .modeling_qwen2 import Qwen2Config, Qwen2Model, Qwen2ForCausalLM |
|
|
|
import pdb |
|
import time |
|
import random |
|
random.seed(42) |
|
import torch |
|
from statistics import mean |
|
import torch.nn.functional as F |
|
import PIL |
|
from decord import VideoReader, cpu |
|
from .conversation import conv_templates, SeparatorStyle |
|
from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_TOKEN |
|
from .mm_utils import tokenizer_image_token, load_video, KeywordsStoppingCriteria, get_anyres_image_grid_shape |
|
import math |
|
import re |
|
from .vision_tower_builder import build_vision_tower |
|
from .vision_resampler_builder import build_vision_resampler |
|
from .vision_projector_builder import build_vision_projector |
|
from .utils import rank0_print |
|
from .sae import SiglipAE |
|
import numpy as np |
|
import pdb |
|
from abc import ABC, abstractmethod |
|
|
|
class LlavaMetaModel: |
|
def __init__(self, config): |
|
super(LlavaMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
delay_load = getattr(config, "delay_load", False) |
|
self.vision_tower = build_vision_tower(config, delay_load=delay_load) |
|
self.vision_resampler = build_vision_resampler(config, vision_tower=self.vision_tower) |
|
self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config) |
|
|
|
if "unpad" in getattr(config, "mm_patch_merge_type", ""): |
|
self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype)) |
|
|
|
self.hidden_size=config.hidden_size |
|
self.text_mlp=nn.Sequential( |
|
nn.Linear(config.hidden_size,config.hidden_size), |
|
nn.GELU(), |
|
) |
|
self.sae=SiglipAE() |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, "vision_tower", None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
mm_patch_merge_type = model_args.mm_patch_merge_type |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "") |
|
|
|
if self.get_vision_tower() is None: |
|
vision_tower = build_vision_tower(model_args) |
|
vision_resampler = build_vision_resampler(model_args, vision_tower=vision_tower) |
|
for k, v in vision_resampler.config.items(): |
|
setattr(self.config, k, v) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
self.vision_resampler = [vision_resampler] |
|
else: |
|
self.vision_tower = vision_tower |
|
self.vision_resampler = vision_resampler |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_resampler = self.vision_resampler[0] |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_resampler = self.vision_resampler |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
|
|
for p in self.vision_resampler.parameters(): |
|
p.requires_grad = True |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, "mm_projector_type", "linear") |
|
self.config.mm_hidden_size = getattr(vision_resampler, "hidden_size", vision_tower.hidden_size) |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
self.config.mm_patch_merge_type = mm_patch_merge_type |
|
|
|
self.sae=SiglipAE() |
|
self.sae.load_state_dict(torch.load('/share/LXRlxr0_0/code/videoxl2/videoxl2/longva/longva/model/encoder.pth'),strict=False) |
|
|
|
if getattr(self, "mm_projector", None) is None: |
|
self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config) |
|
|
|
if "unpad" in mm_patch_merge_type: |
|
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) |
|
self.image_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std) |
|
else: |
|
|
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu") |
|
|
|
def get_w(weights, keyword): |
|
return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector")) |
|
rank0_print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}") |
|
incompatible_keys = self.vision_resampler.load_state_dict(get_w(mm_projector_weights, "vision_resampler"), strict=False) |
|
rank0_print(f"Loaded vision resampler weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}") |
|
|
|
def unpad_image(tensor, original_size): |
|
""" |
|
Unpads a PyTorch tensor of a padded and resized image. |
|
|
|
Args: |
|
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format. |
|
original_size (tuple): The original size of the image (height, width). |
|
|
|
Returns: |
|
torch.Tensor: The unpadded image tensor. |
|
""" |
|
original_width, original_height = original_size |
|
current_height, current_width = tensor.shape[1:] |
|
|
|
|
|
original_aspect_ratio = original_width / original_height |
|
current_aspect_ratio = current_width / current_height |
|
|
|
|
|
if original_aspect_ratio > current_aspect_ratio: |
|
|
|
scale_factor = current_width / original_width |
|
new_height = int(original_height * scale_factor) |
|
padding = (current_height - new_height) // 2 |
|
unpadded_tensor = tensor[:, padding : current_height - padding, :] |
|
else: |
|
|
|
scale_factor = current_height / original_height |
|
new_width = int(original_width * scale_factor) |
|
padding = (current_width - new_width) // 2 |
|
unpadded_tensor = tensor[:, :, padding : current_width - padding] |
|
|
|
return unpadded_tensor |
|
|
|
class LlavaMetaForCausalLM(ABC): |
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def get_2dPool(self, image_feature): |
|
height = width = self.get_vision_tower().num_patches_per_side |
|
num_frames, num_tokens, num_dim = image_feature.shape |
|
image_feature = image_feature.view(num_frames, height, width, -1) |
|
image_feature = image_feature.permute(0, 3, 1, 2).contiguous() |
|
|
|
if self.config.mm_spatial_pool_mode == "average": |
|
image_feature = nn.functional.avg_pool2d(image_feature, self.config.mm_spatial_pool_stride) |
|
elif self.config.mm_spatial_pool_mode == "max": |
|
image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride) |
|
else: |
|
raise ValueError(f"Unexpected mm_spatial_pool_mode: {self.config.mm_spatial_pool_mode}") |
|
image_feature = image_feature.permute(0, 2, 3, 1) |
|
image_feature = image_feature.view(num_frames, -1, num_dim) |
|
return image_feature |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().get_vision_tower()(images) |
|
|
|
image_features = self.get_model().mm_projector(image_features) |
|
image_features = self.get_model().vision_resampler(image_features, images=images) |
|
return image_features |
|
|
|
def add_image(self, image_features): |
|
return torch.repeat_interleave(image_features, repeats=4, dim=0) |
|
|
|
def add_video(self, video_features): |
|
|
|
current_batch_size = video_features.size(0) |
|
|
|
if current_batch_size < 4: |
|
last_feature = video_features[-1:] |
|
|
|
num_repeats = 4 - current_batch_size |
|
repeated_features = last_feature.repeat(num_repeats, 1, 1, 1) |
|
|
|
expanded_x = torch.cat([video_features, repeated_features], dim=0) |
|
return expanded_x |
|
|
|
|
|
if current_batch_size % 4 != 0: |
|
last_feature = video_features[-1:] |
|
|
|
padding_size = 4 - (current_batch_size % 4) |
|
repeated_features = last_feature.repeat(padding_size, 1, 1, 1) |
|
|
|
expanded_x = torch.cat([video_features, repeated_features], dim=0) |
|
return expanded_x |
|
|
|
|
|
return video_features |
|
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None): |
|
if self.config.enable_chunk_prefill: |
|
chunk_size_for_vision_tower = self.config.prefill_config['chunk_size_for_vision_tower'] |
|
else: |
|
chunk_size_for_vision_tower = 100000 |
|
|
|
|
|
max_batch_size = chunk_size_for_vision_tower |
|
|
|
num_frames = videos_or_images.shape[0] |
|
|
|
videos_or_images_features = [] |
|
|
|
videos_or_images_features = torch.empty((num_frames, 729, 1152), device=self.get_model().device, dtype=self.get_model().dtype) |
|
|
|
|
|
current_idx = 0 |
|
if num_frames > max_batch_size: |
|
|
|
num_batches = (num_frames + max_batch_size - 1) // max_batch_size |
|
for i in range(num_batches): |
|
start_idx = i * max_batch_size |
|
end_idx = min((i + 1) * max_batch_size, num_frames) |
|
|
|
|
|
batch_videos_or_images = videos_or_images[start_idx:end_idx] |
|
batch_features = self.get_model().get_vision_tower()(batch_videos_or_images) |
|
|
|
|
|
videos_or_images_features[current_idx:current_idx + batch_features.shape[0]] = batch_features |
|
|
|
current_idx += batch_features.shape[0] |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images) |
|
|
|
per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0) |
|
all_videos_or_images_features = [] |
|
|
|
|
|
|
|
del videos_or_images_features |
|
torch.cuda.empty_cache() |
|
|
|
chunk_size = chunk_size_for_vision_tower |
|
|
|
all_feat_list = [] |
|
for idx, feat in enumerate(per_videos_or_images_features): |
|
for i in range(0, feat.shape[0], chunk_size): |
|
batched_feat = feat[i:i+chunk_size] |
|
batched_feat=self.interpolate(batched_feat) |
|
if idx in video_idx_in_batch: |
|
batched_feat = self.add_video(batched_feat) |
|
else: |
|
batched_feat = self.add_image(batched_feat) |
|
|
|
bc,ch,h,w = batched_feat.shape |
|
batched_feat = batched_feat.view(bc//4,ch,4,h,w) |
|
|
|
batched_feat = self.get_model().sae(batched_feat).squeeze(2) |
|
batched_feat = batched_feat.permute(0, 2, 3, 1).contiguous().flatten(1, 2) |
|
|
|
batched_feat = self.get_model().mm_projector(batched_feat) |
|
batched_feat = self.get_2dPool(batched_feat) |
|
all_feat_list.append(batched_feat) |
|
|
|
feat = torch.cat(all_feat_list, dim=0) |
|
|
|
|
|
|
|
del per_videos_or_images_features |
|
del all_feat_list |
|
torch.cuda.empty_cache() |
|
all_videos_or_images_features.append(feat) |
|
return all_videos_or_images_features |
|
|
|
def interpolate(self,image_features): |
|
b, num_tokens, dim = image_features.shape |
|
|
|
|
|
|
|
target_h = target_w = int(576**0.5) |
|
h = w = int(num_tokens**0.5) |
|
|
|
image_features = image_features.view(b, h, w, dim) |
|
image_features = image_features.permute(0, 3, 1, 2).contiguous() |
|
|
|
chunk_size = 24 |
|
chunks = torch.split(image_features, chunk_size, dim=0) |
|
interpolated_chunks = [] |
|
for chunk in chunks: |
|
interpolated_chunk = F.interpolate( |
|
chunk.to(torch.float32), |
|
size=(target_h, target_w), |
|
mode="bilinear", |
|
align_corners=False, |
|
).to(chunk.dtype) |
|
interpolated_chunks.append(interpolated_chunk) |
|
image_features = torch.cat(interpolated_chunks, dim=0) |
|
del interpolated_chunks |
|
|
|
del chunks |
|
|
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None,time_embedding=None): |
|
|
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
if type(images) is list: |
|
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] |
|
|
|
video_idx_in_batch = [] |
|
for _ in range(len(modalities)): |
|
if modalities[_] == "video": |
|
video_idx_in_batch.append(_) |
|
|
|
images_list = [] |
|
for image in images: |
|
if image.ndim == 4: |
|
images_list.append(image) |
|
else: |
|
images_list.append(image.unsqueeze(0)) |
|
|
|
|
|
concat_images = torch.cat([image for image in images_list], dim=0) |
|
split_sizes = [image.shape[0] for image in images_list] |
|
|
|
image_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes) |
|
|
|
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat") |
|
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square") |
|
|
|
visual_drop_score=[] |
|
new_image_features=[] |
|
|
|
if mm_patch_merge_type == "flat": |
|
|
|
if image_features[0].ndim>2: |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
elif mm_patch_merge_type== "unires": |
|
|
|
for image_idx, image_feature in enumerate(image_features): |
|
|
|
if image_idx in video_idx_in_batch: |
|
|
|
image_feature = image_feature.flatten(0, 1) |
|
|
|
elif image_feature.shape[0] > 1: |
|
|
|
base_image_feature = image_feature[0] |
|
image_feature = image_feature[1:] |
|
|
|
height = width = self.get_vision_tower().num_patches_per_side |
|
assert height * width == base_image_feature.shape[0] |
|
|
|
kernel_size = mm_patch_merge_type.split("avgpool")[-1].split("x")[-1] |
|
kernel_size = 2 |
|
image_feature = image_feature.view(image_feature.shape[0], height, width, -1) |
|
image_feature = image_feature.permute(0, 3, 1, 2).contiguous() |
|
image_feature = nn.functional.avg_pool2d(image_feature,kernel_size) |
|
image_feature = image_feature.flatten(2, 3) |
|
image_feature = image_feature.permute(0, 2, 1).contiguous() |
|
|
|
|
|
image_feature = image_feature.flatten(0, 1) |
|
|
|
else: |
|
|
|
image_feature = image_feature[0] |
|
|
|
new_image_features.append(image_feature) |
|
|
|
image_features = new_image_features |
|
|
|
elif mm_patch_merge_type.startswith("spatial"): |
|
new_image_features = [] |
|
for image_idx, image_feature in enumerate(image_features): |
|
|
|
|
|
|
|
|
|
if image_idx in video_idx_in_batch: |
|
if "unpad" in mm_patch_merge_type: |
|
|
|
|
|
|
|
image_feature = image_feature.flatten(0, 1) |
|
image_feature = torch.cat((image_feature, self.model.image_newline[None].to(image_feature.device)), dim=0) |
|
|
|
elif image_feature.shape[0] > 1: |
|
base_image_feature = image_feature[0] |
|
image_feature = image_feature[1:] |
|
height = width = self.get_vision_tower().num_patches_per_side |
|
assert height * width == base_image_feature.shape[0] |
|
|
|
if "anyres_max" in image_aspect_ratio: |
|
matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio) |
|
if matched_anyres_max_num_patches: |
|
max_num_patches = int(matched_anyres_max_num_patches.group(1)) |
|
|
|
if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio: |
|
if hasattr(self.get_vision_tower(), "image_size"): |
|
vision_tower_image_size = self.get_vision_tower().image_size |
|
else: |
|
raise ValueError("vision_tower_image_size is not found in the vision tower.") |
|
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size) |
|
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) |
|
else: |
|
image_feature = image_feature.view(2, 2, height, width, -1) |
|
|
|
if "maxpool2x2" in mm_patch_merge_type: |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = nn.functional.max_pool2d(image_feature, 2) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches: |
|
unit = image_feature.shape[2] |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
c, h, w = image_feature.shape |
|
times = math.sqrt(h * w / (max_num_patches * unit**2)) |
|
if times > 1.1: |
|
image_feature = image_feature[None] |
|
image_feature = nn.functional.interpolate(image_feature, [int(h // times), int(w // times)], mode="bilinear")[0] |
|
image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
elif "unpad" in mm_patch_merge_type: |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
else: |
|
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() |
|
image_feature = image_feature.flatten(0, 3) |
|
if "nobase" in mm_patch_merge_type: |
|
pass |
|
else: |
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0) |
|
else: |
|
image_feature = image_feature[0] |
|
if "unpad" in mm_patch_merge_type: |
|
image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0) |
|
|
|
new_image_features.append(image_feature) |
|
image_features = new_image_features |
|
else: |
|
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") |
|
else: |
|
error_message = """ |
|
Something is wrong with the input shape. Most likely, you did not wrap the image or video input in a list: |
|
This is correct: |
|
model.generate(input_ids, images=[video_tensor], modalities=["video"], **gen_kwargs) |
|
model.generate(input_ids, images=[image_tensor], modalities=["image"], **gen_kwargs) |
|
This is wrong: |
|
model.generate(input_ids, images=video_tensor, modalities=["video"], **gen_kwargs) |
|
model.generate(input_ids, images=image_tensor, modalities=["image"], **gen_kwargs) |
|
""" |
|
raise ValueError(error_message) |
|
|
|
|
|
|
|
for image_idx, image_feature in enumerate(image_features): |
|
if time_embedding[image_idx] is not None: |
|
mask = (time_embedding[image_idx] == 151654) |
|
indices = torch.nonzero(mask).squeeze() |
|
|
|
embed_token=self.get_model().embed_tokens(time_embedding[image_idx]) |
|
embed_token[indices]=image_features[image_idx] |
|
|
|
|
|
|
|
image_features[image_idx]=embed_token |
|
|
|
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
_input_ids = input_ids |
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
|
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
|
|
if num_images>=2: |
|
print(num_images,input_ids) |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
|
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
|
|
|
|
|
|
|
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
|
|
|
|
|
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
|
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] |
|
|
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
|
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, "tokenizer_padding_side", "right") == "left": |
|
new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
if getattr(self.config, "use_pos_skipping", False) and self.training: |
|
position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device) |
|
split_position = random.randint(0, new_input_embeds.size(1)) |
|
left_add = random.randint(0, self.config.pos_skipping_range) |
|
right_add = random.randint(left_add, self.config.pos_skipping_range) |
|
position_ids[:, :split_position] += left_add |
|
position_ids[:, split_position:] += right_add |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
if model_args.mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu") |
|
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") |
|
|
|
elif model_args.mm_use_im_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
|
|
class LlavaQwenConfig(Qwen2Config): |
|
model_type = "llava_qwen" |
|
|
|
|
|
class LlavaQwenModel(LlavaMetaModel, Qwen2Model): |
|
config_class = LlavaQwenConfig |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super(LlavaQwenModel, self).__init__(config) |
|
|
|
|
|
class LlavaQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM): |
|
config_class = LlavaQwenConfig |
|
|
|
def __init__(self, config): |
|
|
|
Qwen2ForCausalLM.__init__(self, config) |
|
config.model_type = "llava_qwen" |
|
config.rope_scaling = None |
|
|
|
self.model = LlavaQwenModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def uniform_sampling(self, embeds, start_idx, end_idx, step): |
|
indices = torch.arange(start_idx, end_idx, step).to(device=embeds.device) |
|
return embeds.index_select(1, indices), indices |
|
def pooling_sampling(self, embeds, start_idx, end_idx, step, pool_type='avg'): |
|
selected = embeds[:, start_idx:end_idx, :] |
|
B, D, L = selected.shape |
|
kernel_size = step |
|
stride = step |
|
|
|
selected_transposed = selected.transpose(1, 2) |
|
|
|
if pool_type == 'avg_pool': |
|
pooled = F.avg_pool1d(selected_transposed, kernel_size=kernel_size, stride=stride) |
|
elif pool_type == 'max_pool': |
|
pooled = F.max_pool1d(selected_transposed, kernel_size=kernel_size, stride=stride) |
|
else: |
|
raise ValueError(f"Unsupported pooling type: {pool_type}") |
|
|
|
pooled = pooled.transpose(1, 2) |
|
return pooled, torch.arange(start_idx, start_idx + pooled.shape[1] * step, step).to(device=embeds.device) |
|
|
|
def process_block(self, block_embeds, current_past_key_values=None, bsz=1, device=None, position_ids=None, key_position_ids=None): |
|
if current_past_key_values is None: |
|
seq_len = block_embeds.size(1) |
|
position_ids = torch.arange(0, seq_len, device=device).expand(bsz, -1) |
|
attention_mask = torch.ones((bsz, seq_len), device=device, dtype=torch.long) |
|
else: |
|
seq_len = block_embeds.size(1) |
|
prefix_len = current_past_key_values[0][0].size(2) |
|
attention_mask = torch.ones((bsz, prefix_len + seq_len), device=device, dtype=torch.long) |
|
|
|
|
|
outputs = self.model( |
|
inputs_embeds=block_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
key_position_ids=key_position_ids, |
|
past_key_values=current_past_key_values, |
|
use_cache=True, |
|
return_dict=True, |
|
) |
|
return outputs.past_key_values |
|
|
|
def pooling_kvs(self, kvs, step): |
|
|
|
kernel_size = step |
|
stride = step |
|
|
|
|
|
kvs_permuted = kvs.permute(0, 1, 3, 2) |
|
N_flat = kvs_permuted.shape[0] * kvs_permuted.shape[1] |
|
C = kvs_permuted.shape[2] |
|
L = kvs_permuted.shape[3] |
|
kvs_for_pool = kvs_permuted.reshape(N_flat, C, L) |
|
pooled_kvs = F.avg_pool1d(kvs_for_pool, kernel_size=kernel_size, stride=stride) |
|
pooled_kvs_restored = pooled_kvs.view(kvs.shape[0], kvs.shape[1], pooled_kvs.shape[1], pooled_kvs.shape[2]).permute(0, 1, 3, 2) |
|
return pooled_kvs_restored |
|
|
|
|
|
def get_sparse_attention_mask(self, total_len, num_blocks, block_size, time_token_start_indices, time_token_end_indices, time_token_indices, visual_token_start_pos, visual_token_end_pos, attention_mask, inputs_embeds, prev_blocks_num=None): |
|
|
|
causal_mask = torch.tril(torch.ones((total_len, total_len), dtype=torch.bool)).unsqueeze(0).repeat(1, 1, 1) |
|
mask = torch.zeros(total_len, total_len, dtype=torch.bool) |
|
start = visual_token_start_pos |
|
|
|
record_block_start = [] |
|
for i in range(num_blocks): |
|
next_time_token_pos = (i + 1)*block_size |
|
if next_time_token_pos >= len(time_token_start_indices): |
|
end = visual_token_end_pos |
|
else: |
|
end = time_token_start_indices[ next_time_token_pos ] |
|
|
|
mask[start:end, start:end] = True |
|
|
|
if len(record_block_start) >= prev_blocks_num: |
|
prev_start = record_block_start[-prev_blocks_num] |
|
else: |
|
prev_start = visual_token_start_pos |
|
|
|
mask[start:end, prev_start:start] = True |
|
record_block_start.append(start) |
|
start = end |
|
|
|
|
|
mask[:, :visual_token_start_pos] = True |
|
mask[visual_token_end_pos:, :] = True |
|
|
|
for idx in time_token_indices: |
|
mask[idx, :] = True |
|
mask[:, idx] = True |
|
|
|
causal_mask = torch.tril(torch.ones(total_len, total_len, dtype=torch.bool)) |
|
final_mask = (mask & causal_mask).unsqueeze(0).unsqueeze(0).to(dtype=attention_mask.dtype, device=attention_mask.device) |
|
|
|
num_allowed = final_mask.sum().item() |
|
upper_triangle_num = total_len * (total_len + 1) // 2 |
|
ratio = num_allowed / upper_triangle_num |
|
|
|
invert_mask = 1.0 - final_mask |
|
final_mask = ((1.0 - final_mask) * -1e9).to(dtype=inputs_embeds.dtype) |
|
return final_mask, ratio |
|
|
|
|
|
def cat_history_kvs(self, prefix_kvs, kvs_part2, kvs_part3): |
|
prefix_kvs = [[kvs] for kvs in prefix_kvs] |
|
cat_kvs = [] |
|
for prefix_kvs_this_layer, kvs_part2_this_layer, kvs_part3_this_layer in zip(prefix_kvs, kvs_part2, kvs_part3): |
|
prefix_key_this_layer = [tmp[0] for tmp in prefix_kvs_this_layer] |
|
prefix_val_this_layer = [tmp[1] for tmp in prefix_kvs_this_layer] |
|
|
|
key_part2_this_layer = [tmp[0] for tmp in kvs_part2_this_layer] |
|
val_part2_this_layer = [tmp[1] for tmp in kvs_part2_this_layer] |
|
|
|
key_part3_this_layer = [tmp[0] for tmp in kvs_part3_this_layer] |
|
val_part3_this_layer = [tmp[1] for tmp in kvs_part3_this_layer] |
|
|
|
key_this_layer = torch.cat(prefix_key_this_layer + key_part2_this_layer + key_part3_this_layer, dim=-2) |
|
val_this_layer = torch.cat(prefix_val_this_layer + val_part2_this_layer + val_part3_this_layer, dim=-2) |
|
|
|
cat_kvs.append((key_this_layer, val_this_layer)) |
|
return cat_kvs |
|
|
|
def forward_streaming( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
key_position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
dpo_forward: Optional[bool] = False, |
|
cache_position=None, |
|
visual_token_start_pos=None, |
|
visual_token_end_pos=None, |
|
time_token_start_indices=None, |
|
frames_num=None, |
|
time_token_indices=None, |
|
time_token_end_indices=None, |
|
block_size_chosed=None, |
|
prev_blocks_num=None, |
|
offload: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
block_size = block_size_chosed |
|
visual_token_start_pos = visual_token_start_pos |
|
visual_token_end_pos = visual_token_end_pos |
|
visual_len = visual_token_end_pos - visual_token_start_pos |
|
num_blocks = (frames_num + block_size * 4 - 1) // (block_size * 4) |
|
|
|
|
|
blocks_positions = [[(0, 0, visual_token_start_pos)]] |
|
frames_groups = [(0, visual_token_start_pos)] |
|
for idx, (time_start, time_end) in enumerate(zip(time_token_start_indices, time_token_end_indices)): |
|
if idx + 1 < len(time_token_start_indices): |
|
frames_group_end = time_token_start_indices[idx + 1] |
|
else: |
|
frames_group_end = visual_token_end_pos |
|
frames_groups.append( |
|
(time_start, time_end, frames_group_end) |
|
) |
|
|
|
single_block = [] |
|
for group in frames_groups[1:]: |
|
single_block.append(group) |
|
if len(single_block) == block_size: |
|
blocks_positions.append(single_block) |
|
single_block = [] |
|
if len(single_block) != 0: |
|
blocks_positions.append(single_block) |
|
num_blocks = len(blocks_positions) |
|
|
|
start = time.time() |
|
record_prefill_time = 0 |
|
|
|
full_inputs_embeds = inputs_embeds |
|
bsz, total_len, embed_dim = full_inputs_embeds.size() |
|
device = full_inputs_embeds.device |
|
|
|
prefix_embeds = full_inputs_embeds[:, :visual_token_start_pos, :] |
|
visual_embeds = full_inputs_embeds[:, visual_token_start_pos:visual_token_end_pos, :] |
|
suffix_embeds = full_inputs_embeds[:, visual_token_end_pos:, :] |
|
num_visual_tokens = visual_embeds.size(1) |
|
|
|
all_past_key_values = [[] for _ in range(len(self.model.layers))] |
|
prefix_past_key_values = [] |
|
|
|
|
|
|
|
if prefix_embeds.size(1) > 0: |
|
pkv = self.process_block(prefix_embeds, bsz=bsz, device=device) |
|
for i in range(len(pkv)): |
|
all_past_key_values[i].append(pkv[i]) |
|
prefix_past_key_values.append(pkv[i]) |
|
|
|
prev_blocks = blocks_positions[1:1+prev_blocks_num] |
|
prev_the_first_block = prev_blocks[0] |
|
prev_b_start = prev_the_first_block[0][0] |
|
prev_the_last_block = prev_blocks[-1] |
|
prev_b_end = prev_the_last_block[-1][-1] |
|
|
|
block_streaming_past_key_values = prefix_past_key_values |
|
|
|
query_position_ids = torch.arange(prev_b_start, prev_b_end, dtype=torch.long, device=device) |
|
past_key_position_ids = torch.arange(0, block_streaming_past_key_values[0][0].size(2), dtype=torch.long, device=device) |
|
key_position_ids = torch.cat([past_key_position_ids, query_position_ids], dim=0) |
|
|
|
visual_embeds_this_block = full_inputs_embeds[:,prev_b_start:prev_b_end,:] |
|
pkv = self.process_block(visual_embeds_this_block, current_past_key_values=block_streaming_past_key_values, bsz=bsz, device=device, position_ids=query_position_ids.unsqueeze(0), key_position_ids=key_position_ids.unsqueeze(0)) |
|
|
|
for i in range(len(pkv)): |
|
for block in prev_blocks: |
|
block_start, _, _ = block[0] |
|
_, _, block_end = block[-1] |
|
all_past_key_values[i].append( (pkv[i][0][:,:,block_start:block_end], pkv[i][1][:,:,block_start:block_end]) ) |
|
|
|
block_streaming_past_key_values_part1 = prefix_past_key_values |
|
position_ids_part1 = torch.arange(0, prefix_past_key_values[0][0].size(2), dtype=torch.long, device=device) |
|
block_streaming_past_key_values_part2 = [[] for _ in range(len(self.model.layers))] |
|
position_ids_part2 = torch.tensor([], dtype=torch.long, device=device) |
|
block_streaming_past_key_values_part3=None |
|
position_ids_part3 = None |
|
|
|
query_position_ids = None |
|
for idx, single_block in enumerate(blocks_positions[:]): |
|
|
|
if idx == 0 or idx <= prev_blocks_num: |
|
continue |
|
|
|
b_start, _, _ = single_block[0] |
|
_, _, b_end = single_block[-1] |
|
visual_embeds_this_block = full_inputs_embeds[:,b_start:b_end,:] |
|
prev_blocks = blocks_positions[max(idx - prev_blocks_num, 1):idx] |
|
prev_the_first_block = prev_blocks[0] |
|
prev_b_start = prev_the_first_block[0][0] |
|
|
|
this_block_length = b_end - prev_b_start |
|
prev_block_length = b_start - prev_b_start |
|
true_block_length = b_end - b_start |
|
|
|
block_streaming_past_key_values_part3 = [tmp[-prev_blocks_num:] for tmp in all_past_key_values] |
|
|
|
if offload: |
|
block_streaming_past_key_values_part3 = [ |
|
[ |
|
(t[0].to(device=device), t[1].to(device=device)) |
|
for t in sublist |
|
] |
|
for sublist in block_streaming_past_key_values_part3 |
|
] |
|
|
|
block_streaming_past_key_values = self.cat_history_kvs(block_streaming_past_key_values_part1, block_streaming_past_key_values_part2, block_streaming_past_key_values_part3) |
|
|
|
query_position_ids = torch.arange(b_start, b_end, dtype=torch.long, device=device) |
|
position_ids_part3 = torch.arange(prev_b_start, b_start, dtype=torch.long, device=device) |
|
key_position_ids = torch.cat([position_ids_part1, position_ids_part2, position_ids_part3, query_position_ids], dim=0) |
|
|
|
start_1 = time.time() |
|
pkv = self.process_block(visual_embeds_this_block, current_past_key_values=block_streaming_past_key_values, bsz=bsz, device=device, position_ids=query_position_ids.unsqueeze(0), key_position_ids=key_position_ids.unsqueeze(0)) |
|
end_1 = time.time() |
|
|
|
record_prefill_time += end_1-start_1 |
|
|
|
for i in range(len(pkv)): |
|
length_before_chunk = block_streaming_past_key_values[i][0].size(2) |
|
key_this_block, val_this_block = pkv[i] |
|
key_this_block = key_this_block[:,:,length_before_chunk:,:] |
|
val_this_block = val_this_block[:,:,length_before_chunk:,:] |
|
|
|
if offload: |
|
all_past_key_values[i].append( (key_this_block.to('cpu'), val_this_block.to('cpu')) ) |
|
else: |
|
all_past_key_values[i].append( (key_this_block, val_this_block) ) |
|
|
|
time_keys_list = [] |
|
time_vals_list = [] |
|
|
|
extract_timestamps_position_ids_list = [] |
|
for group in prev_the_first_block: |
|
time_start, time_end, _ = group |
|
extract_timestamps_position_ids_list.append(torch.arange(time_start, time_end, dtype=torch.long, device=device)) |
|
|
|
time_start = time_start - prev_b_start |
|
time_end = time_end - prev_b_start |
|
|
|
time_keys_list.append(block_streaming_past_key_values_part3[i][0][0][:,:,time_start:time_end,:]) |
|
time_vals_list.append(block_streaming_past_key_values_part3[i][0][1][:,:,time_start:time_end,:]) |
|
|
|
time_keys = torch.cat(time_keys_list, dim=2) |
|
time_vals = torch.cat(time_vals_list, dim=2) |
|
|
|
block_streaming_past_key_values_part2[i].append( (time_keys, time_vals) ) |
|
|
|
if i == 0: |
|
position_ids_part2 = torch.cat([position_ids_part2] + extract_timestamps_position_ids_list, dim=0) |
|
|
|
|
|
merged_pkv = [] |
|
for layer_pkvs in all_past_key_values: |
|
if not layer_pkvs: |
|
continue |
|
keys = torch.cat([pkv[0].to(device=device) for pkv in layer_pkvs], dim=2) |
|
values = torch.cat([pkv[1].to(device=device) for pkv in layer_pkvs], dim=2) |
|
merged_pkv.append((keys, values)) |
|
|
|
|
|
|
|
|
|
pkv = merged_pkv |
|
del block_streaming_past_key_values |
|
del all_past_key_values |
|
del block_streaming_past_key_values_part1 |
|
del block_streaming_past_key_values_part2 |
|
del block_streaming_past_key_values_part3 |
|
torch.cuda.empty_cache() |
|
|
|
|
|
mixed_prefill_past_key_values = pkv |
|
prefill_len = visual_token_end_pos |
|
|
|
|
|
|
|
if suffix_embeds.size(1) > 0: |
|
seq_len = suffix_embeds.size(1) |
|
total_len = prefill_len + seq_len |
|
position_ids = torch.arange(prefill_len, total_len, device=device, dtype=torch.long).expand(bsz, -1) |
|
key_position_ids = torch.arange(0, total_len, device=device, dtype=torch.long).expand(bsz, -1) |
|
attention_mask = torch.ones((bsz, total_len), device=device, dtype=torch.long) |
|
|
|
outputs = super().forward( |
|
inputs_embeds=suffix_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
key_position_ids=key_position_ids, |
|
past_key_values=mixed_prefill_past_key_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
use_cache=True, |
|
return_dict=return_dict, |
|
|
|
) |
|
|
|
|
|
del mixed_prefill_past_key_values |
|
torch.cuda.empty_cache() |
|
|
|
return outputs |
|
def forward_mask( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
dpo_forward: Optional[bool] = False, |
|
cache_position=None, |
|
visual_token_start_pos=None, |
|
visual_token_end_pos=None, |
|
time_token_start_indices=None, |
|
time_token_end_indices=None, |
|
frames_num=None, |
|
time_token_indices=None, |
|
prev_blocks_num=None, |
|
block_size_chosed=None |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
bsz, total_len, embed_dim = inputs_embeds.size() |
|
visual_token_start_pos = visual_token_start_pos |
|
visual_token_end_pos = visual_token_end_pos |
|
visual_len = visual_token_end_pos - visual_token_start_pos |
|
|
|
block_size_list = [2,4,8,16,32] |
|
best_block_size = None |
|
min_diff = float('inf') |
|
|
|
block_size = block_size_chosed |
|
num_blocks = (frames_num + block_size * 4 - 1) // (block_size * 4) |
|
final_mask, ratio = self.get_sparse_attention_mask(total_len, num_blocks, block_size, time_token_start_indices, time_token_end_indices, time_token_indices, visual_token_start_pos, visual_token_end_pos, attention_mask, inputs_embeds, prev_blocks_num) |
|
|
|
|
|
|
|
return super().forward( |
|
input_ids=input_ids, |
|
attention_mask=final_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
key_position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[List[List[int]]] = None, |
|
return_dict: Optional[bool] = None, |
|
modalities: Optional[List[str]] = ["image"], |
|
dpo_forward: Optional[bool] = False, |
|
cache_position=None, |
|
time_embedding=None, |
|
visual_token_start_pos=None, |
|
visual_token_end_pos=None, |
|
time_token_start_indices=None, |
|
frames_num=None, |
|
time_token_indices=None, |
|
time_token_end_indices=None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
if input_ids is not None and input_ids.size(1) == 1: |
|
past_key_len = past_key_values[0][0].size(-2) |
|
key_position_ids = torch.arange(0, past_key_len+1, device=position_ids.device,dtype=torch.long).expand(1, -1) |
|
if position_ids[0][0] != past_key_len: |
|
position_ids = torch.tensor([[past_key_len]]).to(device=position_ids.device, dtype=position_ids.dtype) |
|
key_position_ids = torch.arange(0, past_key_len+1, device=position_ids.device,dtype=torch.long).expand(1, -1) |
|
|
|
return super().forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
key_position_ids=key_position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if inputs_embeds is None: |
|
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes, time_embedding) |
|
|
|
if self.config.enable_chunk_prefill: |
|
|
|
prefill_mode = self.config.prefill_config['chunk_prefill_mode'] |
|
chunk_size = self.config.prefill_config['chunk_size'] |
|
step_size = self.config.prefill_config['step_size'] |
|
offload = self.config.prefill_config['offload'] |
|
|
|
if prefill_mode=='streaming': |
|
return self.forward_streaming( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
key_position_ids=key_position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
visual_token_start_pos=visual_token_start_pos, |
|
visual_token_end_pos=visual_token_end_pos, |
|
time_token_start_indices=time_token_start_indices, |
|
frames_num=frames_num, |
|
time_token_indices=time_token_indices, |
|
time_token_end_indices=time_token_end_indices, |
|
block_size_chosed=chunk_size, |
|
prev_blocks_num=chunk_size - step_size, |
|
offload=offload, |
|
) |
|
elif prefill_mode=='mask': |
|
return self.forward_mask( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
visual_token_start_pos=visual_token_start_pos, |
|
visual_token_end_pos=visual_token_end_pos, |
|
time_token_start_indices=time_token_start_indices, |
|
frames_num=frames_num, |
|
time_token_indices=time_token_indices, |
|
time_token_end_indices=time_token_end_indices, |
|
block_size_chosed=block_size_chosed, |
|
prev_blocks_num=prev_blocks_num, |
|
) |
|
else: |
|
return super().forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_sizes: Optional[torch.Tensor] = None, |
|
modalities: Optional[List[str]] = ["image"], |
|
time_embedding=None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
|
|
position_ids = kwargs.pop("position_ids", None) |
|
attention_mask = kwargs.pop("attention_mask", None) |
|
|
|
if "inputs_embeds" in kwargs: |
|
raise NotImplementedError("`inputs_embeds` is not supported") |
|
|
|
if images is not None and images[0].size(0) > 0: |
|
IMAGE_TOKEN_INDEX = -200 |
|
TOKEN_PERFRAME = 36 |
|
frames_num = images[0].size(0) |
|
visual_token_start_pos = (inputs == IMAGE_TOKEN_INDEX).nonzero(as_tuple=True)[1].item() |
|
num_tokens = time_embedding[0].size(0) |
|
visual_token_end_pos = visual_token_start_pos + num_tokens |
|
kwargs['visual_token_start_pos'] = visual_token_start_pos |
|
kwargs['visual_token_end_pos'] = visual_token_end_pos |
|
|
|
time_token_start_indices = (time_embedding[0] == 1462).nonzero(as_tuple=True)[0].cpu().tolist() |
|
kwargs['time_token_start_indices'] = [idx + visual_token_start_pos for idx in time_token_start_indices] |
|
|
|
kwargs['frames_num'] = frames_num |
|
time_token_indices = (time_embedding[0] != 151654).nonzero(as_tuple=True)[0].cpu().tolist() |
|
kwargs['time_token_indices'] = [idx + visual_token_start_pos for idx in time_token_indices] |
|
time_token_end_indices = (time_embedding[0] == 25).nonzero(as_tuple=True)[0].cpu().tolist() |
|
kwargs['time_token_end_indices'] = [idx + visual_token_start_pos + 1 for idx in time_token_end_indices] |
|
|
|
|
|
|
|
if images is not None: |
|
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes=image_sizes,time_embedding=time_embedding) |
|
|
|
else: |
|
inputs_embeds = self.get_model().embed_tokens(inputs) |
|
|
|
|
|
return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs) |
|
|
|
@torch.no_grad() |
|
def chat(self, |
|
video_path, |
|
tokenizer, |
|
user_prompt, |
|
chat_history=None, |
|
return_history=True, |
|
max_num_frames=512, |
|
sample_fps=1, |
|
max_sample_fps=4, |
|
generation_config={}): |
|
|
|
|
|
conv = conv_templates["qwen_1_5"].copy() |
|
if chat_history is None or len(chat_history) == 0: |
|
user_prompt = f'{DEFAULT_IMAGE_TOKEN}\n{user_prompt}' |
|
else: |
|
assert DEFAULT_IMAGE_TOKEN in chat_history[0]['content'], chat_history |
|
for msg in chat_history: |
|
conv.append_message(msg['role'], msg['content']) |
|
|
|
conv.append_message(conv.roles[0], user_prompt) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.model.device) |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
generation_config["stopping_criteria"] = [stopping_criteria] |
|
|
|
|
|
frames, timestamps = load_video(video_path, max_num_frames, fps=sample_fps, max_fps=max_sample_fps) |
|
print(f'video has loaded, extract {len(frames)} frames.') |
|
|
|
time_stamps=[] |
|
token_frames_sum=(len(timestamps)+3)//4 |
|
compress_frame = timestamps[::4] |
|
time_embedding = [] |
|
for time in compress_frame: |
|
item = f"Time {time}s:" |
|
time_embedding.append(tokenizer(item).input_ids) |
|
time_embedding.append([151654]*144) |
|
|
|
time_embedding = [item for sublist in time_embedding for item in sublist] |
|
time_embedding = torch.tensor(time_embedding, dtype=torch.long).to(self.model.device) |
|
time_stamps.append(time_embedding) |
|
|
|
video_tensor = self.get_vision_tower().image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(self.model.device, dtype=torch.float16) |
|
|
|
with torch.inference_mode(): |
|
output_ids = self.generate(input_ids, images=[video_tensor],time_embedding=time_stamps, modalities=["video"], **generation_config) |
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
|
|
if chat_history is None: |
|
chat_history = [] |
|
|
|
chat_history.append({"role":conv.roles[0], "content":user_prompt}) |
|
chat_history.append({"role":conv.roles[1], "content":outputs}) |
|
if return_history: |
|
return outputs, chat_history |
|
else: |
|
return outputs |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
image_sizes = kwargs.pop("image_sizes", None) |
|
visual_token_start_pos = kwargs.get("visual_token_start_pos", None) |
|
visual_token_end_pos = kwargs.get("visual_token_end_pos", None) |
|
time_token_start_indices = kwargs.get("time_token_start_indices", None) |
|
frames_num = kwargs.get("frames_num", None) |
|
time_token_indices = kwargs.get("time_token_indices", None) |
|
time_token_end_indices = kwargs.get("time_token_end_indices", None) |
|
|
|
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs) |
|
|
|
inputs["visual_token_start_pos"] = visual_token_start_pos |
|
inputs["visual_token_end_pos"] = visual_token_end_pos |
|
inputs["time_token_start_indices"] = time_token_start_indices |
|
inputs["frames_num"] = frames_num |
|
inputs["time_token_indices"] = time_token_indices |
|
inputs["time_token_end_indices"] = time_token_end_indices |
|
|
|
if images is not None: |
|
inputs["images"] = images |
|
if image_sizes is not None: |
|
inputs["image_sizes"] = image_sizes |
|
return inputs |
|
|
|
|
|
AutoConfig.register("llava_qwen", LlavaQwenConfig) |
|
AutoModelForCausalLM.register(LlavaQwenConfig, LlavaQwenConfig) |