--- library_name: transformers license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: BingoGuard-bert-base-pt results: [] --- # BingoGuard-bert-base-pt This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1359 - Accuracy: 0.9438 - F1: 0.6724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4101 | 1.0 | 456 | 0.1396 | 0.9428 | 0.6398 | | 0.3366 | 2.0 | 912 | 0.1291 | 0.9393 | 0.6516 | | 0.2788 | 3.0 | 1368 | 0.1209 | 0.9462 | 0.6766 | | 0.2695 | 4.0 | 1824 | 0.1321 | 0.9413 | 0.6648 | | 0.236 | 5.0 | 2280 | 0.1359 | 0.9438 | 0.6724 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.4