File size: 22,387 Bytes
9d5b280 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
import collections
import math
import pathlib
import sys
from typing import List, Optional, Tuple, Union
from lm_eval.api.group import ConfigurableGroup
from lm_eval.api.metrics import (
aggregate_subtask_metrics,
mean,
pooled_sample_stderr,
stderr_for_metric,
)
from lm_eval.api.task import Task
from lm_eval.utils import eval_logger, positional_deprecated
class TaskOutput:
"""
Wrapper class for Task outputs.It contains various attributes and methods to manage and calculate metrics for the task.
Attributes:
task (object): The task object.
task_name (str): The name of the task.
task_config (dict): The configuration of the task.
version (str): The version of the task.
group_name (str): The name of the task group.
n_shot (int): The number of shots for the task.
task_alias (str): The alias of the task.
group_alias (str): The alias of the task group.
is_group (bool): Indicates if the task is a group.
logged_samples (list): The list of logged samples.
sample_len (int): The length of the samples.
sample_metrics (defaultdict): The dictionary of samples' metrics.
agg_metrics (defaultdict): The dictionary of aggregate metrics.
Methods:
from_taskdict(cls, task_name: str, task):
Creates a TaskOutput instance from a task dictionary.
calculate_aggregate_metric(bootstrap_iters=100000) -> None:
Calculates the aggregate metrics for the task.
"""
def __init__(
self,
task=None,
task_name=None,
task_config=None,
version=None,
group_name=None,
n_shot=None,
task_alias=None,
group_alias=None,
is_group=None,
):
self.task = task
self.task_config = task_config
self.task_name = task_name
self.group_name = group_name
self.version = version
self.n_shot = n_shot
self.task_alias = task_alias
self.group_alias = group_alias
self.is_group = is_group
self.logged_samples = []
self.sample_len = None
self.sample_metrics = collections.defaultdict(list)
self.agg_metrics = collections.defaultdict(list)
@classmethod
def from_taskdict(cls, task_name: str, task):
if isinstance(task, tuple):
group_name, task = task
else:
group_name = None
if not task:
# these gets filtered out in get_task_list
# once they are added to group hierarchy
is_group = True
return cls(
task=task, task_name=task_name, is_group=is_group, group_name=group_name
)
version = task.VERSION
task_config = dict(task.dump_config())
if (n_shot := task_config.get("num_fewshot")) == 0:
n_shot = task_config.get("metadata", {}).get("num_fewshot", 0)
task_alias = task_config.get("alias")
group_alias = task_config.get("group_alias")
return cls(
task=task,
task_name=task_name,
task_config=task_config,
group_name=group_name,
version=version,
n_shot=n_shot,
task_alias=task_alias,
group_alias=group_alias,
)
def calculate_aggregate_metric(self, bootstrap_iters=100000) -> None:
for (metric, filter_key), items in self.sample_metrics.items():
try:
agg_fn = self.task.aggregation()[metric]
except KeyError:
# This is when process results output an arbitrary metric
# TODO: Handle this better and allow other aggregate functions other than mean.
agg_fn = mean
metric_key = f"{metric},{filter_key}"
self.agg_metrics[metric_key] = agg_fn(items)
self.sample_len = len(items) # TODO: same sample size for each metric?
if isinstance(bootstrap_iters, int):
stderr_fn = stderr_for_metric(
metric=agg_fn,
bootstrap_iters=min(bootstrap_iters, 100)
if metric in ["bleu", "chrf", "ter"]
else bootstrap_iters,
)
self.agg_metrics[f"{metric}_stderr,{filter_key}"] = (
stderr_fn(items) if (stderr_fn and len(items) > 1) else "N/A"
)
else:
raise ValueError(
f"Received bootstrap_iters '{bootstrap_iters}' but expected an integer. Set to 0 to turn off stderr calculations."
)
def __repr__(self):
return (
f"TaskOutput(task_name={self.task_name}, "
f"group_name={self.group_name}, "
f"version={self.version}, "
f"n_shot={self.n_shot}, "
f"task_alias={self.task_alias}, "
f"group_alias={self.group_alias})"
)
def get_task_list(task_dict: dict) -> List[TaskOutput]:
outputs = []
for task_name, task_obj in task_dict.items():
if isinstance(task_obj, dict):
_outputs = get_task_list(task_obj)
outputs.extend(_outputs)
else:
task_output = TaskOutput.from_taskdict(task_name, task_obj)
outputs.append(task_output)
return outputs
def get_subtask_list(task_dict, task_root=None, depth=0):
subtask_list = {}
for group_obj, task_obj in task_dict.items():
if isinstance(group_obj, ConfigurableGroup):
# group_name = group_obj.group_name
group_name = group_obj.group_name
else:
group_name = group_obj
if isinstance(task_obj, dict):
_subtask_list = get_subtask_list(
task_obj, task_root=group_name, depth=depth + 1
)
if task_root:
subtask_list.setdefault((task_root, depth), []).extend(
[
_task
for (_task, _depth) in _subtask_list.keys()
if (_depth - 1) == depth
]
)
subtask_list = {**subtask_list, **_subtask_list}
else:
if isinstance(task_obj, ConfigurableGroup):
# group_or_task_name = task_obj.group_name
group_or_task_name = task_obj.group_name
elif isinstance(task_obj, Task):
# group_or_task_name = task_obj.task_name
group_or_task_name = task_obj.task_name
if task_root is None:
subtask_list.setdefault((group_or_task_name, depth), [])
else:
subtask_list.setdefault((task_root, depth), []).append(
group_or_task_name
)
if depth == 0:
_subtask_list = {}
for group_key, task_list in subtask_list.items():
group_name, depth = group_key
_subtask_list[group_name] = task_list
subtask_list = _subtask_list
return subtask_list
def print_writeout(task) -> None:
for inst in task.instances:
# print the prompt for the first few documents
if inst.doc_id < 1:
eval_logger.info(
f"Task: {task}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
)
eval_logger.info(f"Request: {str(inst)}")
def get_sample_size(task, limit: Optional[int]) -> Union[int, None]:
if limit is not None:
limit = (
int(math.ceil(len(task.eval_docs) * limit)) if limit < 1.0 else int(limit)
)
return limit
def prepare_print_tasks(
task_dict: dict,
results: dict,
task_depth=0,
group_depth=0,
) -> Tuple[dict, dict]:
"""
@param task_dict: Dictionary representing the group hierarchy of tasks. Each key is a group name and its
value is a list of task names.
@param results: Dictionary containing the results of each task. Each key is a
group name and its value is a dictionary of task results.
@param task_depth: The indentation level for printing the task
hierarchy. Default is 0.
@param group_depth: The indentation level for printing the group
hierarchy. Default is 0.
@return: A tuple of two dictionaries: results_agg and groups_agg. results_agg contains
aggregated results for each task, and groups_agg contains aggregated results for each group.
Prepares the task hierarchy and aggregates the results for each task and group recursively for printing.
"""
def _sort_task_dict(task_dict):
"""
Helper utility. Sorts the task dict at the current level of the hierarchy based on alphabetized task name.
Required so that we end up sorting within each sub-header correctly.
"""
return dict(
sorted(
task_dict.items(),
key=lambda item: item[0].group_name
if isinstance(item[0], ConfigurableGroup)
else item[0],
)
)
task_agg = collections.defaultdict(dict)
group_agg = collections.defaultdict(dict)
task_dict = _sort_task_dict(task_dict)
for task_or_group_name, task_or_group_obj in task_dict.items():
tab_string = " " * task_depth + "- " if task_depth > 0 else ""
if isinstance(task_or_group_name, ConfigurableGroup):
# string_name = task_or_group_name.group_name
name = task_or_group_name.group_name
from_configurable_group = True
task_or_group_obj = _sort_task_dict(task_or_group_obj)
elif isinstance(task_or_group_name, str):
name = task_or_group_name
if isinstance(task_or_group_obj, Task):
# string_name = task_or_group_obj.task_name
name = task_or_group_obj.task_name
from_configurable_group = False
task_agg[name] = results[name].copy()
if from_configurable_group:
if task_or_group_name.group_alias is not None:
alias = task_or_group_name.group_alias
else:
alias = task_or_group_name.group
else:
if "alias" in task_agg[name]:
alias = task_agg[name]["alias"]
else:
alias = name
task_agg[name]["alias"] = tab_string + alias
if "samples" in task_agg[name]:
task_agg[name].pop("samples")
if from_configurable_group and (" " not in results[name]):
group_tab_string = " " * group_depth + "- " if group_depth > 0 else ""
group_agg[name] = results[name].copy()
group_agg[name]["alias"] = group_tab_string + alias
if "samples" in group_agg[name]:
group_agg[name].pop("samples")
if isinstance(task_or_group_obj, dict):
task_depth += 1
group_depth += 1
_task_agg, _group_agg = prepare_print_tasks(
task_or_group_obj, results, task_depth, group_depth
)
task_agg = {
**task_agg,
**_task_agg,
}
group_agg = {**group_agg, **_group_agg}
task_depth -= 1
group_depth -= 1
return task_agg, group_agg
def consolidate_results(
eval_tasks: List[TaskOutput],
) -> Tuple[dict, dict, dict, dict, dict, dict]:
"""
@param eval_tasks: list(TaskOutput).
@return: A tuple containing the consolidated results, samples, configs, versions, and num_fewshot.
Consolidates the results of multiple evaluation tasks into a single structure.
The method iterates over each evaluation instance and extracts relevant information to create the consolidated
results structure. The consolidated results structure has the following properties:
- results: A defaultdict with task names as keys and dictionaries as values. Each dictionary contains
metric/filter pairs as keys and corresponding metric values as values. The "alias" key is used to store task
aliases specified in the task configuration.
- samples: A defaultdict with task names as keys and lists of log samples as values.
- configs: A defaultdict with task names as keys and task configurations as values.
- versions: A defaultdict with task names as keys and task versions as values.
- num_fewshot: A defaultdict with task names as keys and number of few-shot samples as values.
- higher_is_better: A defaultdict with task names as keys and indicators of whether higher values are better
for each metric as values.
The method then returns the consolidated results, samples, configs, versions, and num_fewshot as a tuple.
"""
# stores the final result for each task, for each metric/filter pair.
results = collections.defaultdict(dict)
# logs info about each document evaluated.
samples = collections.defaultdict(list)
# store num-fewshot value per task
num_fewshot = collections.defaultdict(int)
# Tracks the YAML configs of all chosen task
configs = collections.defaultdict(dict)
# Tracks each task's version.
versions = collections.defaultdict(dict)
# Track `higher_is_better` for each metric
higher_is_better = collections.defaultdict(dict)
for task_output in eval_tasks:
if "task_alias" in (task_config := task_output.task_config):
results[task_output.task_name]["alias"] = task_config["task_alias"]
else:
results[task_output.task_name]["alias"] = task_output.task_name
if group_alias := task_output.group_alias:
if group_alias not in results and (group_name := task_output.group_name):
results[group_name]["alias"] = group_alias
num_fewshot[task_output.task_name] = task_output.n_shot
configs[task_output.task_name] = task_output.task_config
versions[task_output.task_name] = task_output.version
samples[task_output.task_name] = task_output.logged_samples
higher_is_better[task_output.task_name] = task_output.task.higher_is_better()
for (metric, filter_key), items in task_output.sample_metrics.items():
metric_key = f"{metric},{filter_key}"
results[task_output.task_name][metric_key] = task_output.agg_metrics[
metric_key
]
results[task_output.task_name]["samples"] = task_output.sample_len
results[task_output.task_name][f"{metric}_stderr,{filter_key}"] = (
task_output.agg_metrics[f"{metric}_stderr,{filter_key}"]
)
return results, samples, configs, versions, num_fewshot, higher_is_better
def consolidate_group_results(
results,
versions,
task_dict,
task_root=None,
show_group_table=False,
task_aggregation_list=None,
) -> Tuple[dict, dict, bool, Union[None,]]:
"""
(Recursively) calculates groups' aggregated metrics and updates the results and versions dictionaries with this info.
@return: a tuple [results, versions, show_group_table, task_aggregation_list] with formats described below:
- results: A defaultdict with task names (and, after this function is called, group names of
groups that perform aggregation) as keys, and dictionaries with "alias" and metric,filter_name pairs as keys.
- versions: A defaultdict with task names (and, after this function is called, group names of
groups that perform aggregation) as keys, and float values representing the task or group's version if a version is specified. (defaulting to None).
- show_group_table: a boolean which is true if there exists a group that requires printing of its aggregated scores in a group table.
- task_aggregation_list: a defaultdict listing the subtasks to average over to produce a given group's end metric.
The method then returns the updated results, versions, show_group_table, and task_aggregation_list as a tuple.
In the top-level invocation of this function, task_aggregation_list is ignored.
"""
if task_root is None:
task_root = {}
if task_aggregation_list is None:
task_aggregation_list = {}
for group_or_task, group_or_task_info in task_dict.items():
# Convert to string
if isinstance(group_or_task, ConfigurableGroup):
group_config = group_or_task.config
group_or_task = group_or_task.group_name
else:
group_config = None
if isinstance(group_or_task_info, Task):
if task_root:
task_aggregation_list.setdefault(task_root, []).append(
group_or_task_info.task_name
)
else:
(
results,
versions,
show_group_table,
_task_aggregation_list,
) = consolidate_group_results(
results,
versions,
group_or_task_info,
group_or_task,
show_group_table,
task_aggregation_list,
)
if task_root:
task_aggregation_list.setdefault(task_root, []).extend(
task_aggregation_list.get(group_or_task, [])
)
if (group_config is None) or (
group_config["aggregate_metric_list"] is None
):
results[group_or_task][" "] = " "
continue
if "aggregate_metric_list" in group_config:
agg_metric_list = group_config["aggregate_metric_list"]
show_group_table = show_group_table | bool(
group_config["aggregate_metric_list"]
)
task_list = _task_aggregation_list[group_or_task]
metric_list = list(
{
key
for task in task_list
for key in results[task].keys()
if "_stderr" not in key and key not in ["task", "alias", "samples"]
}
)
for metric in metric_list:
stderr = "_stderr,".join(metric.split(","))
# gather metrics, sizes, and stderrs from subtasks
metrics = [
results[task][metric]
for task in task_list
if metric in results[task]
] # TODO: copy?
stderrs = [
results[task][stderr]
for task in task_list
if stderr in results[task]
]
sizes = [
results[task]["samples"]
for task in task_list
if metric in results[task]
]
for metric_config in agg_metric_list:
for filter_name in metric_config["filter_list"]:
if metric != ",".join([metric_config["metric"], filter_name]):
continue
# compute group's pooled metric and stderr
if metric_config["aggregation"] == "mean":
aggregate_fn = aggregate_subtask_metrics
elif callable(metric_config["aggregation"]):
aggregate_fn = metric_config["aggregation"]
else:
raise ValueError(
f"Currently, only 'mean' is supported for automatically aggregating scores across groups' subtasks. Got '{metric_config['aggregation']}' for group '{group_or_task}'"
)
results[group_or_task][metric] = aggregate_fn(
metrics,
sizes,
metric_config["weight_by_size"],
)
# TODO: calculate groups' metrics using arbitrary agg fns
if "N/A" in stderrs:
results[group_or_task][stderr] = "N/A"
else:
# NOTE: this assumes we are using the mean to aggregate. There are warnings about this elsewhere
results[group_or_task][stderr] = pooled_sample_stderr(
stderrs, sizes
)
results[group_or_task]["samples"] = sum(sizes)
group_metadata = group_config.get("metadata", None)
if group_metadata is not None:
versions[group_or_task] = group_metadata.get("version", None)
# print(results)
return results, versions, show_group_table, task_aggregation_list
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
"""
Search upward in the directory tree to a maximum of three layers
to find and return the package root (containing the 'tests' folder)
"""
cur_path = start_path.resolve()
max_layers = 3
for _ in range(max_layers):
if (cur_path / "tests" / "test_version_stable.py").exists():
return cur_path
else:
cur_path = cur_path.parent.resolve()
raise FileNotFoundError(
f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
)
@positional_deprecated
def run_task_tests(task_list: List[str]):
"""
Find the package root and run the tests for the given tasks
"""
import pytest
package_root = find_test_root(start_path=pathlib.Path(__file__))
task_string = " or ".join(task_list)
args = [
f"{package_root}/tests/test_version_stable.py",
f"--rootdir={package_root}",
"-k",
f"{task_string}",
]
sys.path.append(str(package_root))
pytest_return_val = pytest.main(args)
if pytest_return_val:
raise ValueError(
f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
)
|