File size: 23,789 Bytes
9d5b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import json
import os
import re
import time
from collections import defaultdict
from dataclasses import asdict, dataclass
from datetime import datetime
from pathlib import Path

from datasets import load_dataset
from datasets.utils.metadata import MetadataConfigs
from huggingface_hub import (
    DatasetCard,
    DatasetCardData,
    HfApi,
    hf_hub_url,
)
from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status

from lm_eval.utils import (
    eval_logger,
    get_file_datetime,
    get_file_task_name,
    get_results_filenames,
    get_sample_results_filenames,
    handle_non_serializable,
    hash_string,
    sanitize_list,
    sanitize_model_name,
    sanitize_task_name,
)


@dataclass(init=False)
class GeneralConfigTracker:
    """
    Tracker for the evaluation parameters.

    Attributes:
        model_source (str): Source of the model (e.g. Hugging Face, GGUF, etc.)
        model_name (str): Name of the model.
        model_name_sanitized (str): Sanitized model name for directory creation.
        start_time (float): Start time of the experiment. Logged at class init.
        end_time (float): Start time of the experiment. Logged when calling [`GeneralConfigTracker.log_end_time`]
        total_evaluation_time_seconds (str): Inferred total evaluation time in seconds (from the start and end times).
    """

    model_source: str = None
    model_name: str = None
    model_name_sanitized: str = None
    system_instruction: str = None
    system_instruction_sha: str = None
    fewshot_as_multiturn: bool = None
    chat_template: str = None
    chat_template_sha: str = None
    start_time: float = None
    end_time: float = None
    total_evaluation_time_seconds: str = None

    def __init__(self) -> None:
        """Starts the evaluation timer."""
        self.start_time = time.perf_counter()

    @staticmethod
    def _get_model_name(model_args: str) -> str:
        """Extracts the model name from the model arguments."""

        def extract_model_name(model_args: str, key: str) -> str:
            """Extracts the model name from the model arguments using a key."""
            args_after_key = model_args.split(key)[1]
            return args_after_key.split(",")[0]

        # order does matter, e.g. peft and delta are provided together with pretrained
        prefixes = ["peft=", "delta=", "pretrained=", "model=", "path=", "engine="]
        for prefix in prefixes:
            if prefix in model_args:
                return extract_model_name(model_args, prefix)
        return ""

    def log_experiment_args(
        self,
        model_source: str,
        model_args: str,
        system_instruction: str,
        chat_template: str,
        fewshot_as_multiturn: bool,
    ) -> None:
        """Logs model parameters and job ID."""
        self.model_source = model_source
        self.model_name = GeneralConfigTracker._get_model_name(model_args)
        self.model_name_sanitized = sanitize_model_name(self.model_name)
        self.system_instruction = system_instruction
        self.system_instruction_sha = (
            hash_string(system_instruction) if system_instruction else None
        )
        self.chat_template = chat_template
        self.chat_template_sha = hash_string(chat_template) if chat_template else None
        self.fewshot_as_multiturn = fewshot_as_multiturn

    def log_end_time(self) -> None:
        """Logs the end time of the evaluation and calculates the total evaluation time."""
        self.end_time = time.perf_counter()
        self.total_evaluation_time_seconds = str(self.end_time - self.start_time)


class EvaluationTracker:
    """
    Keeps track and saves relevant information of the evaluation process.
    Compiles the data from trackers and writes it to files, which can be published to the Hugging Face hub if requested.
    """

    def __init__(
        self,
        output_path: str = None,
        hub_results_org: str = "",
        hub_repo_name: str = "",
        details_repo_name: str = "",
        results_repo_name: str = "",
        push_results_to_hub: bool = False,
        push_samples_to_hub: bool = False,
        public_repo: bool = False,
        token: str = "",
        leaderboard_url: str = "",
        point_of_contact: str = "",
        gated: bool = False,
    ) -> None:
        """
        Creates all the necessary loggers for evaluation tracking.

        Args:
            output_path (str): Path to save the results. If not provided, the results won't be saved.
            hub_results_org (str): The Hugging Face organization to push the results to. If not provided, the results will be pushed to the owner of the Hugging Face token.
            hub_repo_name (str): The name of the Hugging Face repository to push the results to. If not provided, the results will be pushed to `lm-eval-results`.
            details_repo_name (str): The name of the Hugging Face repository to push the details to. If not provided, the results will be pushed to `lm-eval-results`.
            result_repo_name (str): The name of the Hugging Face repository to push the results to. If not provided, the results will not be pushed and will be found in the details_hub_repo.
            push_results_to_hub (bool): Whether to push the results to the Hugging Face hub.
            push_samples_to_hub (bool): Whether to push the samples to the Hugging Face hub.
            public_repo (bool): Whether to push the results to a public or private repository.
            token (str): Token to use when pushing to the Hugging Face hub. This token should have write access to `hub_results_org`.
            leaderboard_url (str): URL to the leaderboard on the Hugging Face hub on the dataset card.
            point_of_contact (str): Contact information on the Hugging Face hub dataset card.
            gated (bool): Whether to gate the repository.
        """
        self.general_config_tracker = GeneralConfigTracker()

        self.output_path = output_path
        self.push_results_to_hub = push_results_to_hub
        self.push_samples_to_hub = push_samples_to_hub
        self.public_repo = public_repo
        self.leaderboard_url = leaderboard_url
        self.point_of_contact = point_of_contact
        self.api = HfApi(token=token) if token else None
        self.gated_repo = gated

        if not self.api and (push_results_to_hub or push_samples_to_hub):
            raise ValueError(
                "Hugging Face token is not defined, but 'push_results_to_hub' or 'push_samples_to_hub' is set to True. "
                "Please provide a valid Hugging Face token by setting the HF_TOKEN environment variable."
            )

        if (
            self.api
            and hub_results_org == ""
            and (push_results_to_hub or push_samples_to_hub)
        ):
            hub_results_org = self.api.whoami()["name"]
            eval_logger.warning(
                f"hub_results_org was not specified. Results will be pushed to '{hub_results_org}'."
            )

        if hub_repo_name == "":
            details_repo_name = (
                details_repo_name if details_repo_name != "" else "lm-eval-results"
            )
            results_repo_name = (
                results_repo_name if results_repo_name != "" else details_repo_name
            )
        else:
            details_repo_name = hub_repo_name
            results_repo_name = hub_repo_name
            eval_logger.warning(
                "hub_repo_name was specified. Both details and results will be pushed to the same repository. Using hub_repo_name is no longer recommended, details_repo_name and results_repo_name should be used instead."
            )

        self.details_repo = f"{hub_results_org}/{details_repo_name}"
        self.details_repo_private = f"{hub_results_org}/{details_repo_name}-private"
        self.results_repo = f"{hub_results_org}/{results_repo_name}"
        self.results_repo_private = f"{hub_results_org}/{results_repo_name}-private"

    def save_results_aggregated(
        self,
        results: dict,
        samples: dict,
    ) -> None:
        """
        Saves the aggregated results and samples to the output path and pushes them to the Hugging Face hub if requested.

        Args:
            results (dict): The aggregated results to save.
            samples (dict): The samples results to save.
        """
        self.general_config_tracker.log_end_time()

        if self.output_path:
            try:
                eval_logger.info("Saving results aggregated")

                # calculate cumulative hash for each task - only if samples are provided
                task_hashes = {}
                if samples:
                    for task_name, task_samples in samples.items():
                        sample_hashes = [
                            s["doc_hash"] + s["prompt_hash"] + s["target_hash"]
                            for s in task_samples
                        ]
                        task_hashes[task_name] = hash_string("".join(sample_hashes))

                # update initial results dict
                results.update({"task_hashes": task_hashes})
                results.update(asdict(self.general_config_tracker))
                dumped = json.dumps(
                    results,
                    indent=2,
                    default=handle_non_serializable,
                    ensure_ascii=False,
                )

                path = Path(self.output_path if self.output_path else Path.cwd())
                path = path.joinpath(self.general_config_tracker.model_name_sanitized)
                path.mkdir(parents=True, exist_ok=True)

                self.date_id = datetime.now().isoformat().replace(":", "-")
                file_results_aggregated = path.joinpath(f"results_{self.date_id}.json")
                file_results_aggregated.open("w", encoding="utf-8").write(dumped)

                if self.api and self.push_results_to_hub:
                    repo_id = (
                        self.results_repo
                        if self.public_repo
                        else self.results_repo_private
                    )
                    self.api.create_repo(
                        repo_id=repo_id,
                        repo_type="dataset",
                        private=not self.public_repo,
                        exist_ok=True,
                    )
                    self.api.upload_file(
                        repo_id=repo_id,
                        path_or_fileobj=str(
                            path.joinpath(f"results_{self.date_id}.json")
                        ),
                        path_in_repo=os.path.join(
                            self.general_config_tracker.model_name,
                            f"results_{self.date_id}.json",
                        ),
                        repo_type="dataset",
                        commit_message=f"Adding aggregated results for {self.general_config_tracker.model_name}",
                    )
                    eval_logger.info(
                        "Successfully pushed aggregated results to the Hugging Face Hub. "
                        f"You can find them at: {repo_id}"
                    )

            except Exception as e:
                eval_logger.warning("Could not save results aggregated")
                eval_logger.info(repr(e))
        else:
            eval_logger.info(
                "Output path not provided, skipping saving results aggregated"
            )

    def save_results_samples(
        self,
        task_name: str,
        samples: dict,
    ) -> None:
        """
        Saves the samples results to the output path and pushes them to the Hugging Face hub if requested.

        Args:
            task_name (str): The task name to save the samples for.
            samples (dict): The samples results to save.
        """
        if self.output_path:
            try:
                eval_logger.info(f"Saving per-sample results for: {task_name}")

                path = Path(self.output_path if self.output_path else Path.cwd())
                path = path.joinpath(self.general_config_tracker.model_name_sanitized)
                path.mkdir(parents=True, exist_ok=True)

                file_results_samples = path.joinpath(
                    f"samples_{task_name}_{self.date_id}.jsonl"
                )

                for sample in samples:
                    # we first need to sanitize arguments and resps
                    # otherwise we won't be able to load the dataset
                    # using the datasets library
                    arguments = {}
                    for i, arg in enumerate(sample["arguments"]):
                        arguments[f"gen_args_{i}"] = {}
                        for j, tmp in enumerate(arg):
                            arguments[f"gen_args_{i}"][f"arg_{j}"] = tmp

                    sample["resps"] = sanitize_list(sample["resps"])
                    sample["filtered_resps"] = sanitize_list(sample["filtered_resps"])
                    sample["arguments"] = arguments
                    sample["target"] = str(sample["target"])

                    sample_dump = (
                        json.dumps(
                            sample,
                            default=handle_non_serializable,
                            ensure_ascii=False,
                        )
                        + "\n"
                    )

                    with open(file_results_samples, "a", encoding="utf-8") as f:
                        f.write(sample_dump)

                if self.api and self.push_samples_to_hub:
                    repo_id = (
                        self.details_repo
                        if self.public_repo
                        else self.details_repo_private
                    )
                    self.api.create_repo(
                        repo_id=repo_id,
                        repo_type="dataset",
                        private=not self.public_repo,
                        exist_ok=True,
                    )
                    try:
                        if self.gated_repo:
                            headers = build_hf_headers()
                            r = get_session().put(
                                url=f"https://huggingface.co/api/datasets/{repo_id}/settings",
                                headers=headers,
                                json={"gated": "auto"},
                            )
                            hf_raise_for_status(r)
                    except Exception as e:
                        eval_logger.warning("Could not gate the repository")
                        eval_logger.info(repr(e))
                    self.api.upload_folder(
                        repo_id=repo_id,
                        folder_path=str(path),
                        path_in_repo=self.general_config_tracker.model_name_sanitized,
                        repo_type="dataset",
                        commit_message=f"Adding samples results for {task_name} to {self.general_config_tracker.model_name}",
                    )
                    eval_logger.info(
                        f"Successfully pushed sample results for task: {task_name} to the Hugging Face Hub. "
                        f"You can find them at: {repo_id}"
                    )

            except Exception as e:
                eval_logger.warning("Could not save sample results")
                eval_logger.info(repr(e))
        else:
            eval_logger.info("Output path not provided, skipping saving sample results")

    def recreate_metadata_card(self) -> None:
        """
        Creates a metadata card for the evaluation results dataset and pushes it to the Hugging Face hub.
        """

        eval_logger.info("Recreating metadata card")
        repo_id = self.details_repo if self.public_repo else self.details_repo_private

        files_in_repo = self.api.list_repo_files(repo_id=repo_id, repo_type="dataset")
        results_files = get_results_filenames(files_in_repo)
        sample_files = get_sample_results_filenames(files_in_repo)

        # Build a dictionary to store the latest evaluation datetime for:
        # - Each tested model and its aggregated results
        # - Each task and sample results, if existing
        # i.e. {
        #     "org__model_name__gsm8k": "2021-09-01T12:00:00",
        #     "org__model_name__ifeval": "2021-09-01T12:00:00",
        #     "org__model_name__results": "2021-09-01T12:00:00"
        # }
        latest_task_results_datetime = defaultdict(lambda: datetime.min.isoformat())

        for file_path in sample_files:
            file_path = Path(file_path)
            filename = file_path.name
            model_name = file_path.parent
            task_name = get_file_task_name(filename)
            results_datetime = get_file_datetime(filename)
            task_name_sanitized = sanitize_task_name(task_name)
            # Results and sample results for the same model and task will have the same datetime
            samples_key = f"{model_name}__{task_name_sanitized}"
            results_key = f"{model_name}__results"
            latest_datetime = max(
                latest_task_results_datetime[samples_key],
                results_datetime,
            )
            latest_task_results_datetime[samples_key] = latest_datetime
            latest_task_results_datetime[results_key] = max(
                latest_task_results_datetime[results_key],
                latest_datetime,
            )

        # Create metadata card
        card_metadata = MetadataConfigs()

        # Add the latest aggregated results to the metadata card for easy access
        for file_path in results_files:
            file_path = Path(file_path)
            results_filename = file_path.name
            model_name = file_path.parent
            eval_date = get_file_datetime(results_filename)
            eval_date_sanitized = re.sub(r"[^\w\.]", "_", eval_date)
            results_filename = Path("**") / Path(results_filename).name
            config_name = f"{model_name}__results"
            sanitized_last_eval_date_results = re.sub(
                r"[^\w\.]", "_", latest_task_results_datetime[config_name]
            )

            if eval_date_sanitized == sanitized_last_eval_date_results:
                # Ensure that all results files are listed in the metadata card
                current_results = card_metadata.get(config_name, {"data_files": []})
                current_results["data_files"].append(
                    {"split": eval_date_sanitized, "path": [str(results_filename)]}
                )
                card_metadata[config_name] = current_results
                # If the results file is the newest, update the "latest" field in the metadata card
                card_metadata[config_name]["data_files"].append(
                    {"split": "latest", "path": [str(results_filename)]}
                )

        # Add the tasks details configs
        for file_path in sample_files:
            file_path = Path(file_path)
            filename = file_path.name
            model_name = file_path.parent
            task_name = get_file_task_name(filename)
            eval_date = get_file_datetime(filename)
            task_name_sanitized = sanitize_task_name(task_name)
            eval_date_sanitized = re.sub(r"[^\w\.]", "_", eval_date)
            results_filename = Path("**") / Path(filename).name
            config_name = f"{model_name}__{task_name_sanitized}"
            sanitized_last_eval_date_results = re.sub(
                r"[^\w\.]", "_", latest_task_results_datetime[config_name]
            )
            if eval_date_sanitized == sanitized_last_eval_date_results:
                # Ensure that all sample results files are listed in the metadata card
                current_details_for_task = card_metadata.get(
                    config_name, {"data_files": []}
                )
                current_details_for_task["data_files"].append(
                    {"split": eval_date_sanitized, "path": [str(results_filename)]}
                )
                card_metadata[config_name] = current_details_for_task
                # If the samples results file is the newest, update the "latest" field in the metadata card
                card_metadata[config_name]["data_files"].append(
                    {"split": "latest", "path": [str(results_filename)]}
                )

        # Get latest results and extract info to update metadata card examples
        latest_datetime = max(latest_task_results_datetime.values())
        latest_model_name = max(
            latest_task_results_datetime, key=lambda k: latest_task_results_datetime[k]
        )
        last_results_file = [
            f for f in results_files if latest_datetime.replace(":", "-") in f
        ][0]
        last_results_file_path = hf_hub_url(
            repo_id=repo_id, filename=last_results_file, repo_type="dataset"
        )
        latest_results_file = load_dataset(
            "json", data_files=last_results_file_path, split="train"
        )
        results_dict = latest_results_file["results"][0]
        new_dictionary = {"all": results_dict}
        new_dictionary.update(results_dict)
        results_string = json.dumps(new_dictionary, indent=4)

        dataset_summary = (
            "Dataset automatically created during the evaluation run of model "
        )
        if self.general_config_tracker.model_source == "hf":
            dataset_summary += f"[{self.general_config_tracker.model_name}](https://huggingface.co/{self.general_config_tracker.model_name})\n"
        else:
            dataset_summary += f"{self.general_config_tracker.model_name}\n"
        dataset_summary += (
            f"The dataset is composed of {len(card_metadata) - 1} configuration(s), each one corresponding to one of the evaluated task.\n\n"
            f"The dataset has been created from {len(results_files)} run(s). Each run can be found as a specific split in each "
            'configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.\n\n'
            'An additional configuration "results" store all the aggregated results of the run.\n\n'
            "To load the details from a run, you can for instance do the following:\n"
        )
        if self.general_config_tracker.model_source == "hf":
            dataset_summary += (
                "```python\nfrom datasets import load_dataset\n"
                f'data = load_dataset(\n\t"{repo_id}",\n\tname="{latest_model_name}",\n\tsplit="latest"\n)\n```\n\n'
            )
        dataset_summary += (
            "## Latest results\n\n"
            f"These are the [latest results from run {latest_datetime}]({last_results_file_path.replace('/resolve/', '/blob/')}) "
            "(note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. "
            'You find each in the results and the "latest" split for each eval):\n\n'
            f"```python\n{results_string}\n```"
        )
        card_data = DatasetCardData(
            dataset_summary=dataset_summary,
            repo_url=f"https://huggingface.co/{self.general_config_tracker.model_name}",
            pretty_name=f"Evaluation run of {self.general_config_tracker.model_name}",
            leaderboard_url=self.leaderboard_url,
            point_of_contact=self.point_of_contact,
        )
        card_metadata.to_dataset_card_data(card_data)
        card = DatasetCard.from_template(
            card_data,
            pretty_name=card_data.pretty_name,
        )
        card.push_to_hub(repo_id, repo_type="dataset")