File size: 13,528 Bytes
9d5b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import copy
import json
import logging
from typing import Any, Dict, List, Literal, Tuple

import numpy as np
import pandas as pd
from packaging.version import Version

from lm_eval.loggers.utils import _handle_non_serializable, remove_none_pattern


logger = logging.getLogger(__name__)


def get_wandb_printer() -> Literal["Printer"]:
    """Returns a wandb printer instance for pretty stdout."""
    from wandb.sdk.lib.printer import new_printer

    printer = new_printer()
    return printer


class WandbLogger:
    def __init__(self, **kwargs) -> None:
        """Attaches to wandb logger if already initialized. Otherwise, passes kwargs to wandb.init()

        Args:
            kwargs Optional[Any]: Arguments for configuration.

        Parse and log the results returned from evaluator.simple_evaluate() with:
            wandb_logger.post_init(results)
            wandb_logger.log_eval_result()
            wandb_logger.log_eval_samples(results["samples"])
        """
        try:
            import wandb

            assert Version(wandb.__version__) >= Version("0.13.6")
            if Version(wandb.__version__) < Version("0.13.6"):
                wandb.require("report-editing:v0")
        except Exception as e:
            logger.warning(
                "To use the wandb reporting functionality please install wandb>=0.13.6.\n"
                "To install the latest version of wandb run `pip install wandb --upgrade`\n"
                f"{e}"
            )

        self.wandb_args: Dict[str, Any] = kwargs

        # pop the step key from the args to save for all logging calls
        self.step = self.wandb_args.pop("step", None)

        # initialize a W&B run
        if wandb.run is None:
            self.run = wandb.init(**self.wandb_args)
        else:
            self.run = wandb.run

        self.printer = get_wandb_printer()

    def post_init(self, results: Dict[str, Any]) -> None:
        self.results: Dict[str, Any] = copy.deepcopy(results)
        self.task_names: List[str] = list(results.get("results", {}).keys())
        self.group_names: List[str] = list(results.get("groups", {}).keys())

    def _get_config(self) -> Dict[str, Any]:
        """Get configuration parameters."""
        self.task_configs = self.results.get("configs", {})
        cli_configs = self.results.get("config", {})
        configs = {
            "task_configs": self.task_configs,
            "cli_configs": cli_configs,
        }

        return configs

    def _sanitize_results_dict(self) -> Tuple[Dict[str, str], Dict[str, Any]]:
        """Sanitize the results dictionary."""
        _results = copy.deepcopy(self.results.get("results", dict()))

        # Remove None from the metric string name
        tmp_results = copy.deepcopy(_results)
        for task_name in self.task_names:
            task_result = tmp_results.get(task_name, dict())
            for metric_name, metric_value in task_result.items():
                _metric_name, removed = remove_none_pattern(metric_name)
                if removed:
                    _results[task_name][_metric_name] = metric_value
                    _results[task_name].pop(metric_name)

        # remove string valued keys from the results dict
        wandb_summary = {}
        for task in self.task_names:
            task_result = _results.get(task, dict())
            for metric_name, metric_value in task_result.items():
                if isinstance(metric_value, str):
                    wandb_summary[f"{task}/{metric_name}"] = metric_value

        for summary_metric, summary_value in wandb_summary.items():
            _task, _summary_metric = summary_metric.split("/")
            _results[_task].pop(_summary_metric)

        tmp_results = copy.deepcopy(_results)
        for task_name, task_results in tmp_results.items():
            for metric_name, metric_value in task_results.items():
                _results[f"{task_name}/{metric_name}"] = metric_value
                _results[task_name].pop(metric_name)
        for task in self.task_names:
            _results.pop(task)

        return wandb_summary, _results

    def _log_results_as_table(self) -> None:
        """Generate and log evaluation results as a table to W&B."""
        columns = [
            "Version",
            "Filter",
            "num_fewshot",
            "Metric",
            "Value",
            "Stderr",
        ]

        def make_table(columns: List[str], key: str = "results"):
            import wandb

            table = wandb.Table(columns=columns)
            results = copy.deepcopy(self.results)

            for k, dic in results.get(key).items():
                if k in self.group_names and not key == "groups":
                    continue
                version = results.get("versions").get(k)
                if version == "N/A":
                    version = None
                n = results.get("n-shot").get(k)

                for (mf), v in dic.items():
                    m, _, f = mf.partition(",")
                    if m.endswith("_stderr"):
                        continue
                    if m == "alias":
                        continue

                    if m + "_stderr" + "," + f in dic:
                        se = dic[m + "_stderr" + "," + f]
                        if se != "N/A":
                            se = "%.4f" % se
                        table.add_data(*[k, version, f, n, m, str(v), str(se)])
                    else:
                        table.add_data(*[k, version, f, n, m, str(v), ""])

            return table

        # log the complete eval result to W&B Table
        table = make_table(["Tasks"] + columns, "results")
        self.run.log({"evaluation/eval_results": table}, step=self.step)

        if "groups" in self.results.keys():
            table = make_table(["Groups"] + columns, "groups")
            self.run.log({"evaluation/group_eval_results": table}, step=self.step)

    def _log_results_as_artifact(self) -> None:
        """Log results as JSON artifact to W&B."""
        import wandb

        dumped = json.dumps(
            self.results, indent=2, default=_handle_non_serializable, ensure_ascii=False
        )
        artifact = wandb.Artifact("results", type="eval_results")
        with artifact.new_file("results.json", mode="w", encoding="utf-8") as f:
            f.write(dumped)
        self.run.log_artifact(artifact)

    def log_eval_result(self) -> None:
        """Log evaluation results to W&B."""
        # Log configs to wandb
        configs = self._get_config()
        self.run.config.update(configs, allow_val_change=self.step is not None)

        wandb_summary, self.wandb_results = self._sanitize_results_dict()
        # update wandb.run.summary with items that were removed
        self.run.summary.update(wandb_summary)
        # Log the evaluation metrics to wandb
        self.run.log(self.wandb_results, step=self.step)
        # Log the evaluation metrics as W&B Table
        self._log_results_as_table()
        # Log the results dict as json to W&B Artifacts
        self._log_results_as_artifact()

    def _generate_dataset(
        self, data: List[Dict[str, Any]], config: Dict[str, Any]
    ) -> pd.DataFrame:
        """Generate a dataset from evaluation data.

        Args:
            data (List[Dict[str, Any]]): The data to generate a dataset for.
            config (Dict[str, Any]): The configuration of the task.

        Returns:
            pd.DataFrame: A dataframe that is ready to be uploaded to W&B.
        """
        ids = [x["doc_id"] for x in data]
        labels = [x["target"] for x in data]
        instance = [""] * len(ids)
        resps = [""] * len(ids)
        filtered_resps = [""] * len(ids)
        model_outputs = {}

        metrics_list = config["metric_list"]
        metrics = {}
        for metric in metrics_list:
            metric = metric.get("metric")
            if metric in ["word_perplexity", "byte_perplexity", "bits_per_byte"]:
                metrics[f"{metric}_loglikelihood"] = [x[metric][0] for x in data]
                if metric in ["byte_perplexity", "bits_per_byte"]:
                    metrics[f"{metric}_bytes"] = [x[metric][1] for x in data]
                else:
                    metrics[f"{metric}_words"] = [x[metric][1] for x in data]
            else:
                metrics[metric] = [x[metric] for x in data]

        if config["output_type"] == "loglikelihood":
            instance = [x["arguments"][0][0] for x in data]
            labels = [x["arguments"][0][1] for x in data]
            resps = [
                f"log probability of continuation is {x['resps'][0][0][0]} "
                + "\n\n"
                + "continuation will {} generated with greedy sampling".format(
                    "not be" if not x["resps"][0][0][1] else "be"
                )
                for x in data
            ]
            filtered_resps = [
                f"log probability of continuation is {x['filtered_resps'][0][0]} "
                + "\n\n"
                + "continuation will {} generated with greedy sampling".format(
                    "not be" if not x["filtered_resps"][0][1] else "be"
                )
                for x in data
            ]
        elif config["output_type"] == "multiple_choice":
            instance = [x["arguments"][0][0] for x in data]
            choices = [
                "\n".join([f"{idx}. {y[1]}" for idx, y in enumerate(x["arguments"])])
                for x in data
            ]
            resps = [np.argmax([n[0][0] for n in x["resps"]]) for x in data]
            filtered_resps = [
                np.argmax([n[0] for n in x["filtered_resps"]]) for x in data
            ]
        elif config["output_type"] == "loglikelihood_rolling":
            instance = [x["arguments"][0][0] for x in data]
            resps = [x["resps"][0][0] for x in data]
            filtered_resps = [x["filtered_resps"][0] for x in data]
        elif config["output_type"] == "generate_until":
            instance = [x["arguments"][0][0] for x in data]
            resps = [x["resps"][0][0] for x in data]
            filtered_resps = [x["filtered_resps"][0] for x in data]

        model_outputs["raw_predictions"] = resps
        model_outputs["filtered_predictions"] = filtered_resps

        df_data = {
            "id": ids,
            "data": instance,
        }
        if config["output_type"] == "multiple_choice":
            df_data["choices"] = choices

        tmp_data = {
            "input_len": [len(x) for x in instance],
            "labels": labels,
            "output_type": config["output_type"],
        }
        df_data.update(tmp_data)
        df_data.update(model_outputs)
        df_data.update(metrics)

        return pd.DataFrame(df_data)

    def _log_samples_as_artifact(
        self, data: List[Dict[str, Any]], task_name: str
    ) -> None:
        import wandb

        # log the samples as an artifact
        dumped = json.dumps(
            data,
            indent=2,
            default=_handle_non_serializable,
            ensure_ascii=False,
        )
        artifact = wandb.Artifact(f"{task_name}", type="samples_by_task")
        with artifact.new_file(
            f"{task_name}_eval_samples.json", mode="w", encoding="utf-8"
        ) as f:
            f.write(dumped)
        self.run.log_artifact(artifact)
        # artifact.wait()

    def log_eval_samples(self, samples: Dict[str, List[Dict[str, Any]]]) -> None:
        """Log evaluation samples to W&B.

        Args:
            samples (Dict[str, List[Dict[str, Any]]]): Evaluation samples for each task.
        """
        task_names: List[str] = [
            x for x in self.task_names if x not in self.group_names
        ]

        ungrouped_tasks = []
        tasks_by_groups = {}

        for task_name in task_names:
            group_names = self.task_configs[task_name].get("group", None)
            if group_names:
                if isinstance(group_names, str):
                    group_names = [group_names]

                for group_name in group_names:
                    if not tasks_by_groups.get(group_name):
                        tasks_by_groups[group_name] = [task_name]
                    else:
                        tasks_by_groups[group_name].append(task_name)
            else:
                ungrouped_tasks.append(task_name)

        for task_name in ungrouped_tasks:
            eval_preds = samples[task_name]

            # log the samples as a W&B Table
            df = self._generate_dataset(eval_preds, self.task_configs.get(task_name))
            self.run.log({f"{task_name}_eval_results": df}, step=self.step)

            # log the samples as a json file as W&B Artifact
            self._log_samples_as_artifact(eval_preds, task_name)

        for group, grouped_tasks in tasks_by_groups.items():
            grouped_df = pd.DataFrame()
            for task_name in grouped_tasks:
                eval_preds = samples[task_name]
                df = self._generate_dataset(
                    eval_preds, self.task_configs.get(task_name)
                )
                df["group"] = group
                df["task"] = task_name
                grouped_df = pd.concat([grouped_df, df], ignore_index=True)

                # log the samples as a json file as W&B Artifact
                self._log_samples_as_artifact(eval_preds, task_name)

            self.run.log({f"{group}_eval_results": grouped_df}, step=self.step)