File size: 28,872 Bytes
9d5b280 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
import abc
import asyncio
import copy
import itertools
import json
from functools import cached_property
from typing import (
Any,
Awaitable,
Callable,
Dict,
Iterable,
List,
Literal,
NamedTuple,
Optional,
Tuple,
Union,
)
try:
import requests
from aiohttp import ClientSession, ClientTimeout, TCPConnector
from tenacity import RetryError, retry, stop_after_attempt, wait_exponential
from tqdm import tqdm
from tqdm.asyncio import tqdm_asyncio
except ModuleNotFoundError:
pass
from importlib.util import find_spec
from lm_eval import utils
from lm_eval.api.instance import Instance
from lm_eval.api.model import TemplateLM
from lm_eval.models.utils import Collator, chunks, configure_pad_token
LogLikelihoodInputs = Tuple[Tuple[str, str], List[int], List[int]]
# utility class to keep track of json encoded chats
class JsonChatStr(NamedTuple):
prompt: str
def encode(self, encoding):
return self.prompt.encode(encoding)
eval_logger = utils.eval_logger
class TemplateAPI(TemplateLM):
def __init__(
self,
model: str = None,
pretrained: str = None, # `model` takes precedence over `pretrained` when passed.
base_url: str = None,
tokenizer: Optional[str] = None,
# Loglikelihood tasks require a tokenizer to calculate context lengths,
# however the requests can be sent as a string if the API doesn't support token inputs.
# use tokenized_requests=False
tokenizer_backend: Optional[
Literal["tiktoken", "huggingface", "None", "none"]
] = "huggingface",
truncate: bool = False,
# number of concurrent requests. More useful if not batching
num_concurrent: int = 1,
max_retries: int = 3,
max_gen_toks: int = 256,
batch_size: Union[str, int] = 1,
seed: int = 1234,
max_length: Optional[int] = 2048,
add_bos_token: bool = False,
custom_prefix_token_id: int = None,
# send the requests as tokens or strings
tokenized_requests: bool = True,
trust_remote_code: bool = False,
revision: Optional[str] = "main",
use_fast_tokenizer: bool = True,
verify_certificate: bool = True,
eos_string: str = None,
# timeout in seconds
timeout: int = 300,
**kwargs,
) -> None:
super().__init__()
missing_packages = [
pkg
for pkg in ["aiohttp", "tqdm", "tenacity", "requests"]
if find_spec(pkg) is None
]
if missing_packages:
raise ModuleNotFoundError(
f"Attempted to use an API model, but the required packages {missing_packages} are not installed. "
'Please install these via `pip install lm-eval[api]` or `pip install -e ."[api]"`'
)
self.model = model or pretrained
self.base_url = base_url
self.tokenizer = tokenizer
if not isinstance(batch_size, int) and "auto" in batch_size:
eval_logger.warning(
"Automatic batch size is not supported for API models. Defaulting to batch size 1."
)
elif int(batch_size) > 1:
eval_logger.warning(
"Batch size > 1 detected. Ensure your API supports batched requests with varying total sequence lengths."
)
self._batch_size = int(batch_size) if batch_size != "auto" else 1
self._truncate = truncate
self._max_gen_toks = int(max_gen_toks)
self._seed = int(seed)
# max_length - 1 as we always have 1 token for generation
eval_logger.info(f"Using max length {max_length} - 1")
self.max_length = max_length - 1
if int(num_concurrent) <= 1:
eval_logger.info(
"Concurrent requests are disabled. To enable concurrent requests, set `num_concurrent` > 1."
)
self._concurrent = int(num_concurrent)
self.tokenizer_backend = (
None if tokenizer_backend in ("None", "none") else tokenizer_backend
)
self.add_bos_token = add_bos_token
self.custom_prefix_token_id = custom_prefix_token_id
self.tokenized_requests = tokenized_requests
self.max_retries = int(max_retries)
self.verify_certificate = verify_certificate
self._eos_string = eos_string
self.timeout = int(timeout)
eval_logger.info(f"Using tokenizer {self.tokenizer_backend}")
if self.tokenizer_backend is None:
self.tokenizer = None
self.tokenized_requests = False
else:
if self.tokenizer is None:
if self.tokenizer_backend == "huggingface":
import transformers
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
self.tokenizer if self.tokenizer else self.model,
trust_remote_code=trust_remote_code,
revision=revision,
use_fast=use_fast_tokenizer,
)
# Not used as the API will handle padding but to mirror the behavior of the HFLM
self.tokenizer = configure_pad_token(self.tokenizer)
elif self.tokenizer_backend == "tiktoken":
try:
import tiktoken
self.tokenizer = tiktoken.encoding_for_model(self.model)
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"Attempted to use 'openai' LM type, but the package `tiktoken` is not installed. "
"Please install it via `pip install lm-eval[api]` or `pip install -e .[api]`."
) from e
if "openai" not in self.base_url:
eval_logger.warning(
f"Passed `base_url={self.base_url}` but using (OpenAI) Tiktoken tokenizer backend. "
"Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken."
)
else:
import transformers
assert isinstance(tokenizer, str), "tokenizer must be a string"
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
tokenizer,
trust_remote_code=trust_remote_code,
revision=revision,
use_fast=use_fast_tokenizer,
)
@abc.abstractmethod
def _create_payload(
self,
messages: Union[List[List[int]], List[dict], List[str], str],
*,
generate: bool = True,
gen_kwargs: Optional[dict] = None,
seed: int = 1234,
eos: str = None,
**kwargs,
) -> dict:
"""This method is responsible for creating the json payload that will be sent to the API."""
raise NotImplementedError
def create_message(
self,
messages: Union[List[List[int]], List[str], List[JsonChatStr]],
generate=False,
) -> Union[List[List[int]], List[dict], List[str], str]:
"""Helper method to transform the prompt into the expected API input format. messages consist of batched requests"""
if isinstance(messages[0], JsonChatStr):
# for chat completions we need to decode the json string to list[dict,...]
assert self._batch_size == 1, (
"non-tokenized chat requests are only supported with batch_size=1"
)
# list[dict["role":..., "content":...],...]
return json.loads(messages[0].prompt)
if not self.tokenized_requests:
# if messages are tokenized:
if isinstance(messages[0][0], int):
# assuming decoding is lossless. However, this is only for loglikelihood requests
# as we need to compute the context length. For generations, we don't need to tokenize.
messages = self.decode_batch(messages)
if self._batch_size <= 1:
# if batch is 1 return str
return messages[0]
else:
# list[str,...]
return messages
# list[list[int], ...]
return messages
@staticmethod
@abc.abstractmethod
def parse_logprobs(
outputs: Union[Any, List[Any]],
tokens: List[List[int]] = None,
ctxlen: List[int] = None,
**kwargs,
) -> List[Tuple[float, bool]]:
"""Method used to parse the logprobs from the (batched) API response. This method should return a list of tuples"""
raise NotImplementedError
@staticmethod
@abc.abstractmethod
def parse_generations(outputs: Union[Any, List[Any]], **kwargs) -> List[str]:
"""Method used to parse the generations from the (batched) API response. This method should return a list of str"""
raise NotImplementedError
@cached_property
def api_key(self) -> str:
"""Override this property to return the API key for the API request."""
return ""
@cached_property
def header(self) -> dict:
"""Override this property to return the headers for the API request."""
return {"Authorization": f"Bearer {self.api_key}"}
@property
def tokenizer_name(self) -> str:
"""Must be defined for LM subclasses which implement Chat Templating.
Should return the name of the tokenizer or chat template used.
Used only to properly fingerprint caches when requests are being cached with `--cache_requests`, otherwise not used.
"""
return ""
def apply_chat_template(
self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
) -> Union[str, JsonChatStr]:
"""Applies a chat template to a list of chat history between user and model."""
if self.tokenizer_backend == "huggingface" and self.tokenized_requests:
return self.tokenizer.apply_chat_template(
chat_history,
tokenize=False,
add_generation_prompt=add_generation_prompt,
continue_final_message=not add_generation_prompt,
)
else:
# bit of a hack. We'll load back before sending to the API
return JsonChatStr(json.dumps(chat_history))
@cached_property
def eot_token_id(self) -> Optional[int]:
if self.tokenizer is None:
return None
else:
if self.tokenizer_backend == "huggingface":
return self.tokenizer.eos_token_id
elif self.tokenizer_backend == "tiktoken":
return self.tokenizer.eot_token
@cached_property
def eos_string(self) -> Optional[str]:
if self._eos_string:
return self._eos_string
elif self.tokenizer is not None:
if self.tokenizer_backend == "huggingface":
return self.tokenizer.eos_token
elif self.tokenizer_backend == "tiktoken":
return self.tokenizer.decode([self.tokenizer.eot_token])
else:
eval_logger.warning(
"Cannot determine EOS string to pass to stop sequence. Manually set by passing `eos_string` to model_args."
)
return None
@cached_property
def prefix_token_id(self) -> Optional[int]:
if self.tokenizer is None:
return None
else:
if self.custom_prefix_token_id is not None:
return self.custom_prefix_token_id
if self.tokenizer_backend == "huggingface":
if self.tokenizer.bos_token_id is not None:
return self.tokenizer.bos_token_id
return self.tokenizer.eos_token_id
else:
return self.tokenizer.eot_token
def tok_encode(
self,
string: str,
left_truncate_len: int = None,
add_special_tokens: bool = False,
truncation: bool = False,
**kwargs,
) -> Union[List[List[int]], List[int], List[str]]:
if self.tokenizer_backend is None:
return [string]
elif self.tokenizer_backend == "huggingface":
# by default for CausalLM - false or self.add_bos_token is set
if not add_special_tokens:
add_special_tokens = False or self.add_bos_token
encoding: Union[List[List[int]], List[int]] = self.tokenizer(
string,
add_special_tokens=add_special_tokens,
truncation=truncation,
return_attention_mask=False,
).input_ids
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
if not isinstance(string, str):
encoding = [enc[-left_truncate_len:] for enc in encoding]
else:
encoding = encoding[-left_truncate_len:]
return encoding
else:
try:
encoding = self.tokenizer.encode(string)
except Exception:
encoding = self.tokenizer.encode_batch(string)
return encoding
def decode_batch(self, tokens: List[List[int]]) -> List[str]:
if self.tokenizer_backend == "huggingface":
return self.tokenizer.batch_decode(tokens)
elif self.tokenizer_backend == "tiktoken":
return self.tokenizer.decode_batch(tokens)
def model_call(
self,
messages: Union[List[List[int]], List[str], List[JsonChatStr]],
*,
generate: bool = True,
gen_kwargs: Optional[Dict] = None,
**kwargs,
) -> Optional[dict]:
# !!! Copy: shared dict for each request, need new object !!!
gen_kwargs = copy.deepcopy(gen_kwargs)
try:
response = requests.post(
self.base_url,
json=self._create_payload(
self.create_message(messages),
generate=generate,
gen_kwargs=gen_kwargs,
seed=self._seed,
eos=self.eos_string,
**kwargs,
),
headers=self.header,
verify=self.verify_certificate,
)
if not response.ok:
eval_logger.warning(
f"API request failed with error message: {response.text}. Retrying..."
)
response.raise_for_status()
return response.json()
except RetryError:
eval_logger.error(
"API request failed after multiple retries. Please check the API status."
)
return None
async def amodel_call(
self,
session: ClientSession,
messages: Union[List[List[int]], List[str], List[JsonChatStr]],
*,
generate: bool = True,
cache_keys: list = None,
ctxlens: Optional[List[int]] = None,
gen_kwargs: Optional[Dict] = None,
**kwargs,
) -> Union[List[str], List[Tuple[float, bool]], None]:
# !!! Copy: shared dict for each request, need new object !!!
gen_kwargs = copy.deepcopy(gen_kwargs)
payload = self._create_payload(
self.create_message(messages),
generate=generate,
gen_kwargs=gen_kwargs,
seed=self._seed,
**kwargs,
)
cache_method = "generate_until" if generate else "loglikelihood"
try:
async with session.post(
self.base_url,
json=payload,
headers=self.header,
) as response:
if not response.ok:
error_text = await response.text()
eval_logger.warning(
f"API request failed with error message: {error_text}. Retrying..."
)
# raising exception will retry the request
response.raise_for_status()
outputs = await response.json()
answers = (
self.parse_generations(
outputs=outputs,
)
if generate
else self.parse_logprobs(
outputs=outputs,
tokens=messages,
ctxlens=ctxlens,
)
)
if cache_keys:
for res, cache in zip(answers, cache_keys):
self.cache_hook.add_partial(cache_method, cache, res)
return answers
# If the retries also fail
except RetryError:
eval_logger.error(
"API request failed after multiple retries. Please check the API status."
)
return None
def batch_loglikelihood_requests(
self, chunks: Iterable[List[LogLikelihoodInputs]]
) -> Tuple[List[List[int]], List[int], List[Tuple[str, str]]]:
inputs = []
ctxlens = []
cache_keys = []
for chunk in chunks:
for cache_key, context_enc, continuation_enc in chunk:
# max_length - 1 as we always have 1 token for generation
inp = (context_enc + continuation_enc)[-self.max_length :]
if len(inp) < len(context_enc + continuation_enc):
eval_logger.warning(
f"Context length ({len(context_enc)}) + continuation length ({len(continuation_enc)}) > max_length ({self.max_length}). Left truncating context."
)
ctxlen = len(context_enc) - max(
0, len(context_enc) + len(continuation_enc) - self.max_length
)
inputs.append(inp)
ctxlens.append(ctxlen)
cache_keys.append(cache_key)
return inputs, ctxlens, cache_keys
async def get_batched_requests(
self,
requests: list,
cache_keys: list,
*,
generate: bool = True,
ctxlens: List[int] = None,
**kwargs,
) -> Union[List[List[str]], List[List[Tuple[float, bool]]]]:
ctxlens = ctxlens if ctxlens else [None] * len(requests)
conn = TCPConnector(limit=self._concurrent)
async with ClientSession(
connector=conn, timeout=ClientTimeout(total=self.timeout)
) as session:
retry_: Callable[..., Awaitable[Any]] = retry(
stop=stop_after_attempt(self.max_retries),
wait=wait_exponential(multiplier=0.5, min=1, max=10),
reraise=True,
)(self.amodel_call)
# Create tasks for each batch of request
tasks = [
asyncio.create_task(
retry_(
session=session,
messages=message,
cache_keys=cache_key,
generate=generate,
ctxlens=ctxlen,
**kwargs,
)
)
for message, cache_key, ctxlen in zip(
chunks(requests, n=self._batch_size),
chunks(cache_keys, n=self._batch_size),
chunks(ctxlens, n=self._batch_size),
)
]
return await tqdm_asyncio.gather(*tasks, desc="Requesting API")
def _loglikelihood_tokens(self, requests, **kwargs) -> List[Tuple[float, bool]]:
assert self.tokenizer is not None, (
"Tokenizer is required for loglikelihood tasks to compute context lengths."
)
res = []
def _collate(req: LogLikelihoodInputs):
"""Defines the key for the sorted method"""
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = req[1] + req[2]
return -len(toks), tuple(toks)
re_ord = Collator(
requests,
sort_fn=_collate,
group_by=None,
)
# if concurrent then we'll batch in the async context
chunked = re_ord.get_batched(n=self._batch_size if self._concurrent <= 1 else 0)
if self._concurrent <= 1:
pbar = tqdm(desc="Requesting API", total=len(requests))
for chunk in chunked:
inputs, ctxlens, cache_keys = self.batch_loglikelihood_requests([chunk])
outputs = retry(
stop=stop_after_attempt(self.max_retries),
wait=wait_exponential(multiplier=0.5, min=1, max=10),
reraise=True,
)(self.model_call)(messages=inputs, generate=False)
if isinstance(outputs, dict):
outputs = [outputs]
for answer_, cache_key in zip(
self.parse_logprobs(
outputs=outputs, tokens=inputs, ctxlens=ctxlens
),
cache_keys,
):
if answer_ is not None:
res.append(answer_)
# cache requests that aren't from a loglikelihood_rolling request
if cache_key is not None:
self.cache_hook.add_partial(
"loglikelihood", cache_key, answer_
)
pbar.update(1)
else:
inputs, ctxlens, cache_keys = self.batch_loglikelihood_requests(chunked)
res = itertools.chain.from_iterable(
asyncio.run(
self.get_batched_requests(
inputs, cache_keys, generate=False, ctxlens=ctxlens
)
)
)
return re_ord.get_original(res)
def generate_until(
self, requests: List[Instance], disable_tqdm: bool = False
) -> List[str]:
res = []
def _collate_gen(_requests):
# sort by the length of the non-tokenized contexts
return -len(_requests[0])
# Let the API deal with tokenization
requests, all_gen_kwargs = zip(*(req.args for req in requests))
if self.tokenized_requests:
encodings_list = self.tok_encode(
requests, add_special_tokens=self.add_bos_token
)
else:
encodings_list = [None] * len(requests)
requests = [
(a, b, c) for a, b, c in zip(requests, all_gen_kwargs, encodings_list)
]
re_ord = Collator(
requests,
sort_fn=_collate_gen,
group_by="gen_kwargs",
)
chunked = re_ord.get_batched(
n=self._batch_size if self._concurrent <= 1 else 0, batch_fn=None
)
if self._concurrent <= 1:
pbar = tqdm(desc="Requesting API", total=len(requests))
for chunk in chunked:
contexts, all_gen_kwargs, encodings_list = zip(*chunk)
if self.tokenized_requests:
max_gen_toks = all_gen_kwargs[0].get(
"max_gen_toks", self._max_gen_toks
)
max_context_len = self.max_length - max_gen_toks
encodings_list = [x[-max_context_len:] for x in encodings_list]
if any(
len(x) + max_gen_toks > self.max_length for x in encodings_list
):
eval_logger.warning(
f"Some contexts exceeded (max length: ({self.max_length}) - max_gen_toks: ({max_gen_toks}). They were left truncated."
)
else:
eval_logger.info(
"Tokenized requests are disabled. Context + generation length is not checked."
)
req = encodings_list if self.tokenized_requests else contexts
outputs = retry(
stop=stop_after_attempt(self.max_retries),
wait=wait_exponential(multiplier=0.5, min=1, max=10),
reraise=True,
)(self.model_call)(
messages=req,
generate=True,
gen_kwargs=copy.deepcopy(all_gen_kwargs[0]),
)
for generated_text, context in zip(
self.parse_generations(
outputs=outputs,
contexts=contexts,
),
contexts,
):
if generated_text is not None:
res.append(generated_text)
# partial caching
if context is not None:
self.cache_hook.add_partial(
"generate_until",
(context, all_gen_kwargs[0]),
generated_text,
)
pbar.update(1)
else:
for chunk in chunked:
contexts, all_gen_kwargs, encodings_list = zip(*chunk)
if self.tokenized_requests:
max_gen_toks = all_gen_kwargs[0].get(
"max_gen_toks", self._max_gen_toks
)
max_context_len = self.max_length - max_gen_toks
encodings_list = [x[-max_context_len:] for x in encodings_list]
if any(
len(x) + max_gen_toks > self.max_length for x in encodings_list
):
eval_logger.warning(
f"Some contexts exceeded (max length: ({self.max_length}) - max_gen_toks ({max_gen_toks}). They were left truncated."
)
else:
eval_logger.info(
"Tokenized requests are disabled. Context + generation length is not checked."
)
req = encodings_list if self.tokenized_requests else contexts
results = itertools.chain.from_iterable(
asyncio.run(
self.get_batched_requests(
req,
cache_keys=[(ctx, all_gen_kwargs[0]) for ctx in contexts],
generate=True,
gen_kwargs=copy.deepcopy(all_gen_kwargs[0]),
)
)
)
res.extend(results)
return re_ord.get_original(res)
def loglikelihood_rolling(
self, requests: List[Instance], disable_tqdm: bool = False
) -> List[float]:
loglikelihoods = []
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
rolling_token_windows = list(
map(
utils.make_disjoint_window,
utils.get_rolling_token_windows(
token_list=self.tok_encode(string),
prefix_token=self.prefix_token_id,
# max_seq_len - (1 for context)
max_seq_len=self.max_length - 1,
context_len=1,
),
)
)
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
string_nll = self._loglikelihood_tokens(
rolling_token_windows,
disable_tqdm=True,
)
# discard is_greedy
string_nll = [x[0] for x in string_nll]
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
# cache this loglikelihood_rolling request
self.cache_hook.add_partial("loglikelihood_rolling", (string,), string_nll)
return loglikelihoods
|