File size: 30,121 Bytes
9d5b280 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
import copy
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import transformers
from tqdm import tqdm
from transformers import BatchEncoding
from lm_eval import utils
from lm_eval.api.instance import Instance
from lm_eval.api.registry import register_model
from lm_eval.models.huggingface import HFLM
from lm_eval.models.utils import (
Collator,
flatten_image_list,
handle_stop_sequences,
pad_and_concat,
replace_placeholders,
stop_sequences_criteria,
)
DEFAULT_IMAGE_PLACEHOLDER = "<image>"
eval_logger = utils.eval_logger
@register_model("hf-multimodal")
class HFMultimodalLM(HFLM):
"""
An abstracted Hugging Face model class for multimodal LMs like Llava and Idefics.
"""
AUTO_MODEL_CLASS = transformers.AutoModelForVision2Seq
MULTIMODAL = True # flag to indicate, for now, that this model type can run multimodal requests
def __init__(
self,
pretrained: Union[str, transformers.PreTrainedModel],
image_token_id: Optional[int] = None,
image_string: Optional[str] = None,
interleave: bool = True,
# TODO: handle whitespace in image placeholder (replacement)
max_images: Optional[int] = 999,
convert_img_format=False,
**kwargs,
):
# We initialize using HFLM's init. Sub-methods like _create_model and _create_tokenizer
# modify init behavior.
super().__init__(pretrained, **kwargs)
assert self.batch_size != "auto", (
"Batch size 'auto' is not yet supported for hf-multimodal models."
)
self.chat_applied: bool = False
# TODO: phi-3.5 "image placeholders" are <image_1>, <image_2>, ... in order. how to handle this case
# HF AutoModelForVision2Seq models have an `image_token_id` value in their configs
# denoting the token which indicates a location where an image will be substituted in.
# This can take different string values across models, e.g. <image> for Idefics2 and <|image_pad|> for Qwen2-VL
self.interleave = interleave
self.max_images = max_images
self.rgb = convert_img_format
# WARNING: improperly set image_token_id can lead to ignored image input or other (potentially silent) errors!
if not image_string:
self.image_token_id = (
int(image_token_id)
if image_token_id
else (
getattr(self.config, "image_token_id", None)
or getattr(self.config, "image_token_index", None)
)
)
assert self.image_token_id is not None, (
"Must have a non-None image_token_id to evaluate a Hugging Face AutoModelForVision2Seq model. Please pass `image_token_id` in `--model_args` if model's config does not already specify one."
)
# get the string this token ID corresponds to
self.image_token = self.tok_decode(
[self.image_token_id], skip_special_tokens=False
)
if image_token_id is not None:
eval_logger.info(
f"A non-default image_token_id with image_token_id={self.image_token_id} and string value '{self.image_token}' was specified manually. Note that using an improper image_token placeholder may lead to ignored image input or errors!"
)
else:
eval_logger.info(
f"A non-default image_token string with string value image_string='{image_string}' was specified manually. Note that using an improper image_token placeholder may lead to ignored image input or errors!"
)
self.image_token = image_string
def _create_tokenizer(
self,
pretrained: Union[str, transformers.PreTrainedModel],
tokenizer: Optional[
Union[
str,
transformers.ProcessorMixin,
]
],
revision: Optional[str] = "main",
trust_remote_code: Optional[bool] = False,
**kwargs,
) -> None:
"""
Helper method during initialization.
For the multimodal variant, we initialize not just
`self.tokenizer` but also `self.processor`.
"""
if tokenizer:
if isinstance(tokenizer, str):
return transformers.AutoProcessor.from_pretrained(
tokenizer,
revision=revision,
trust_remote_code=trust_remote_code,
# use_fast=use_fast_tokenizer,
)
else:
assert isinstance(
tokenizer, transformers.ProcessorMixin
) # TODO: check this condition
return tokenizer
# Get tokenizer based on 'pretrained'
if isinstance(pretrained, str):
model_name = pretrained
else:
# get the HF hub name via accessor on model
model_name = self.model.name_or_path
self.processor = transformers.AutoProcessor.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
# use_fast=use_fast_tokenizer,
)
self.tokenizer = self.processor.tokenizer
def tok_multimodal_encode(
self, string, images, left_truncate_len=None, add_special_tokens=None
):
"""Helper function which encodes an image + string combo using AutoProcessor"""
# We inherit special token kwarg setup from HFLM.tok_encode
# special_tokens_kwargs = {}
# by default for CausalLM - false or self.add_bos_token is set
# if add_special_tokens is None:
# special_tokens_kwargs = {"add_special_tokens": False or self.add_bos_token}
# otherwise the method explicitly defines the value
# else:
# special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
# encode text+images
# TODO: why does (Qwen2-VL) processor error when attempting to add special tokens to text?
encoding = self.processor(
text=string, images=images, return_tensors=None
) # , **special_tokens_kwargs)
# remove (and store) our tokenized text
text_encoding = encoding.pop("input_ids")
encoding.pop("attention_mask")
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
text_encoding = text_encoding[-left_truncate_len:]
return text_encoding, encoding # image_encoding is a dict
def _encode_multimodal_pair(self, context, continuation, images):
"""Helper function to perform the role of TemplateLM._encode_pair
Except allowing for image input to also be processed alongside `context`.
This method is a bit messy due to the need to defer conversion of image and text token input
into PyTorch tensors until the main inference loop.
"""
n_spaces = len(context) - len(context.rstrip())
if n_spaces > 0:
continuation = context[-n_spaces:] + continuation
context = context[:-n_spaces]
# TODO: replace default <image> placeholder with self.image_token, for contexts
whole_enc, image_enc = self.tok_multimodal_encode(
context + continuation, images
)
context_enc, _ = self.tok_multimodal_encode(context, images)
# tok_multimodal_encode returns List[List[int]] for tokenized text. Get rid of the batch dim
# since we only are encoding a single string.
# TODO: this is a bit hacky, it'd be nice to make this generally cleaner
whole_enc, context_enc = whole_enc[0], context_enc[0]
context_enc_len = len(context_enc)
continuation_enc = whole_enc[context_enc_len:]
return context_enc, continuation_enc, image_enc
def apply_chat_template(
self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
) -> str:
self.chat_applied = True
if not self.interleave:
for content in chat_history:
c = []
text = content["content"]
# Count and remove image placeholders
image_count = min(
self.max_images, text.count(DEFAULT_IMAGE_PLACEHOLDER)
)
text = text.replace(DEFAULT_IMAGE_PLACEHOLDER, "")
# Add image entries
for _ in range(image_count):
c.append({"type": "image", "image": None})
# Add single text entry at the end
c.append({"type": "text", "text": text})
content["content"] = c
else:
for content in chat_history:
c = []
text = content["content"]
expected_image_count = min(
self.max_images, text.count(DEFAULT_IMAGE_PLACEHOLDER)
)
actual_image_count = 0
text_parts = text.split(DEFAULT_IMAGE_PLACEHOLDER)
for i, part in enumerate(text_parts):
# TODO: concatenate text parts (esp. if skipping images)?
if part: # Add non-empty text parts
c.append({"type": "text", "text": part})
if (
(i < len(text_parts) - 1) and i < self.max_images
): # Add image placeholder after each split except the last
c.append({"type": "image"})
actual_image_count += 1
content["content"] = c
if actual_image_count != expected_image_count:
raise ValueError(
f"Mismatch in image placeholder count. Expected: {expected_image_count}, Actual: {actual_image_count}"
)
return self.processor.apply_chat_template(
chat_history,
add_generation_prompt=add_generation_prompt,
continue_final_message=not add_generation_prompt,
)
def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
if hasattr(self.processor, "apply_chat_template"):
_tokenizer = self.tokenizer
self.tokenizer = self.processor
selected_template = super().chat_template(chat_template)
self.tokenizer = _tokenizer
return selected_template
else:
return super().chat_template(chat_template)
def tok_batch_multimodal_encode(
self,
strings: List[str], # note that input signature of this fn is different
images: List[List], # TODO: images are pil.Image at the moment, update typehint
padding_side: str = "left",
left_truncate_len: int = None,
truncation: bool = False,
) -> Union[
BatchEncoding, Dict[str, torch.Tensor]
]: # note that this return signature differs from HFLM tok_batch_encode.
# NOTE: here, we replace <image> tags with our model's corresponding image_token string value.
if not self.chat_applied:
# TODO<baber>: This still keeps the whitespace in the image placeholder, which is not ideal.
strings = [
replace_placeholders(
string, DEFAULT_IMAGE_PLACEHOLDER, self.image_token, self.max_images
)
for string in strings
]
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
old_padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = padding_side
# add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
images = [img[: self.max_images] for img in images]
if self.rgb:
images = [[img.convert("RGB") for img in sublist] for sublist in images]
# certain models like llava expect a single-level image list even for bs>1, multi-image. TODO: port this over to loglikelihoods
if getattr(self.config, "model_type", "") == "llava":
images = flatten_image_list(images)
encoding = self.processor(
images=images,
text=strings,
truncation=truncation,
padding="longest",
return_tensors="pt",
# **add_special_tokens, # TODO: at least some Processors error out when passing this. How do we control whether text gets BOS added?
)
encoding.to( # TODO: our other tokenization methods in HFLM don't typically move to device. this breaks convention
self.device, self.model.dtype
) # TODO: This only casts the pixel values. Should they always be float16?
if left_truncate_len:
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
encoding["attention_mask"] = encoding["attention_mask"][
:, -left_truncate_len:
]
self.tokenizer.padding_side = old_padding_side
return encoding
def _model_multimodal_call(self, inps, imgs, attn_mask=None, labels=None):
"""
TODO: update docstring
"""
# note: imgs is a dict.
with torch.no_grad():
return self.model(inps, **imgs).logits
def _model_multimodal_generate(self, inputs, max_length, stop, **generation_kwargs):
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
do_sample = generation_kwargs.get("do_sample", None)
# The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
generation_kwargs["do_sample"] = do_sample = False
if do_sample is False and generation_kwargs.get("temperature") == 0.0:
generation_kwargs.pop("temperature")
stopping_criteria = stop_sequences_criteria(
self.tokenizer,
stop,
inputs["input_ids"].shape[1],
inputs["input_ids"].shape[0],
)
return self.model.generate(
**inputs,
max_length=max_length,
stopping_criteria=stopping_criteria,
pad_token_id=self.tokenizer.pad_token_id,
use_cache=True,
**generation_kwargs,
)
def _batch_images(self, image_encs):
"""
Helper function: batch together image encodings across examples in a batch.
# TODO: for variable-sized images, this may break down.
"""
batched_imgs = {}
for key in image_encs[0].keys():
batched_imgs[key] = torch.cat(
[
torch.tensor(
image_enc[key], device=self.device, dtype=self.model.dtype
)
for image_enc in image_encs
],
dim=0,
)
return batched_imgs
def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
raise NotImplementedError(
"model type `hf-multimodal` does not support loglikelihood_rolling. Use 'hf' model type for text-only loglikelihood_rolling tasks ",
"this is because we do not support measuring the loglikelihood a model assigns to an image.",
)
def loglikelihood(
self, requests: List[Instance], disable_tqdm: bool = False
) -> List[Tuple[float, bool]]:
raise NotImplementedError(
"'loglikelihood' requests for model type `hf-multimodal` are not yet tested. This feature will be enabled when a loglikelihood-based multiple-choice VQA dataset is added!"
)
new_reqs = []
for context, continuation, aux_arguments in [req.args for req in requests]:
if context == "":
raise ValueError(
"Must get non-empty context for multimodal requests! You might be trying to run 'loglikelihood_rolling', which is not supported in the multimodal case."
)
else:
visuals = aux_arguments["visual"]
context_enc, continuation_enc, image_enc = self._encode_multimodal_pair(
context, continuation, visuals
)
# TODO: key to pick for caching images
new_reqs.append(
(
(context, continuation, visuals),
context_enc,
continuation_enc,
image_enc,
)
)
return self._loglikelihood_tokens(new_reqs, disable_tqdm=disable_tqdm)
def _loglikelihood_tokens(
self,
requests: List[
Tuple[Tuple[None, str, str], List[int], List[int], List[int]]
], # TODO: update typehint to be correct
disable_tqdm: bool = False,
override_bs: int = None,
) -> List[Tuple[float, bool]]:
res = []
# TODO: **improve multimodal collation.** We currently ignore image size when ordering docs. ideally we'd take them into account
def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
"""Defines the key for the sorted method"""
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = req[1] + req[2]
return -len(toks), tuple(toks)
def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
"""Defines the key to group and lookup one-token continuations"""
# Use with group_by="contexts" (optional)"
# allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
# speeds up some multiple-choice tasks proportionally to the number of choices.
# groups requests by context+continuation[:-1] and infer on one request/group.
return req[-1] + req[-3] + req[-2][:-1]
re_ord = Collator(
requests,
sort_fn=_collate,
group_by="contexts" # TODO: can't group-by just "contexts" any more, need to incorporate imgs
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
and self.logits_cache
else None,
group_fn=_lookup_one_token_cont,
)
# automatic (variable) batch size detection for vectorization
# pull longest context sample from request
n_reordered_requests = len(re_ord)
batch_size = (
self.batch_size
if self.batch_size != "auto"
else override_bs
if override_bs is not None
else 0
)
batch_fn = (
self._batch_scheduler
if self.batch_size == "auto"
and n_reordered_requests > 0
and not override_bs
else None
)
chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
pbar = tqdm(
total=len(requests),
disable=(disable_tqdm or (self.rank != 0)),
desc="Running loglikelihood requests with text+image input",
)
for chunk in chunks:
imgs = []
inps = []
cont_toks_list = []
inplens = []
padding_len_inp = None
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
# again because vectorizing is annoying
for _, context_enc, continuation_enc, image_enc in chunk:
# sanity check
assert len(image_enc) > 0
assert len(context_enc) > 0
assert len(continuation_enc) > 0
assert len(continuation_enc) <= self.max_length
# how this all works (illustrated on a causal decoder-only setup):
# CTX CONT
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
# model \ \
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
# when too long to fit in context, truncate from the left
# TODO: assuming that we won't handle enc-dec Vision2Seq models. Is that a safe assumption?
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
dtype=torch.long,
device=self.device,
)
(inplen,) = inp.shape
padding_len_inp = (
max(padding_len_inp, inplen)
if padding_len_inp is not None
else inplen
)
inps.append(inp) # [1, inp_length]
cont_toks_list.append(continuation_enc)
inplens.append(inplen)
imgs.append(image_enc)
# create encoder attn mask and batched conts, if seq2seq
call_kwargs = {}
batched_inps = pad_and_concat(
padding_len_inp, inps, padding_side="right"
) # [batch, padding_len_inp]
# batch our examples' image inputs together
batched_imgs = self._batch_images(
imgs
) # TODO: fix/test for bs>1 case with differently-sized imgs!
multi_logits = F.log_softmax(
self._model_multimodal_call(batched_inps, batched_imgs, **call_kwargs),
dim=-1,
) # [batch, padding_length (inp or cont), vocab]
for (
request_str,
ctx_tokens,
_,
image_encs,
), logits, inplen, cont_toks in zip(
chunk, multi_logits, inplens, cont_toks_list
):
# Slice to original seq length
contlen = len(cont_toks)
# take only logits in the continuation
# (discard context toks if decoder-only ; discard right-padding)
# also discards + checks for "virtual tokens" in the causal LM's input window
# from prompt/prefix tuning tokens, if applicable
ctx_len = (
inplen + (logits.shape[0] - padding_len_inp)
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
else None
)
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
logits = logits.unsqueeze(0) # [1, seq, vocab]
# Check if per-token argmax is exactly equal to continuation
greedy_tokens = logits.argmax(dim=-1)
# check for one-token continuation cache hits.
# noop in case group_by != "contexts" or no cache hit and returns the
# original args. Otherwise, expands the logits batch dimension and yields each
# batch along with matching continuation tokens and prompt strings.
# logits -> [1, seq, vocab]
for request_str, cont_toks, logits in re_ord.get_cache(
req_str=request_str,
cxt_toks=ctx_tokens,
cont_toks=cont_toks,
logits=logits,
):
cont_toks = torch.tensor(
cont_toks, dtype=torch.long, device=self.device
).unsqueeze(0) # [1, seq]
max_equal = (greedy_tokens == cont_toks).all()
# Obtain log-probs at the corresponding continuation token indices
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
-1
) # [1, seq]
# Answer: (log prob, is-exact-match)
answer = (float(logits.sum()), bool(max_equal))
res.append(answer)
self.cache_hook.add_partial(
"loglikelihood", request_str, answer
) # TODO: choose convention for adding images into the cache key
pbar.update(1)
pbar.close()
return re_ord.get_original(res)
def generate_until(
self, requests: List[Instance], disable_tqdm: bool = False
) -> List[str]:
# TODO: back out to HFLM.generate_until() for all requests without aux_arguments (text-only reqs)
res = []
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(x[0])
return -len(toks), x[0]
pbar = tqdm(
total=len(requests),
disable=(disable_tqdm or (self.rank != 0)),
desc="Running generate_until requests with text+image input",
)
# TODO: port auto-batch sizing into this.
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
re_ords = Collator(
[reg.args for reg in requests],
_collate,
group_by="gen_kwargs",
group_fn=lambda x: x[1],
)
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
### Up to here: was identical to non-multimodal HFLM generate_until ###
eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
for chunk in chunks:
contexts, all_gen_kwargs, aux_arguments = zip(*chunk)
visuals = [arg["visual"] for arg in aux_arguments]
if not isinstance(contexts, list):
contexts = list(
contexts
) # for Qwen2-VL, processor is unhappy accepting a tuple of strings instead of a list.
# TODO: could we upstream this workaround to HF?
### this part onward: same as HFLM ###
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]
# unpack our keyword arguments.
if isinstance(gen_kwargs, dict):
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
# add EOS token to stop sequences
until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
else:
raise ValueError(
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
)
if "max_gen_toks" in kwargs.keys():
max_gen_toks = kwargs.pop("max_gen_toks")
else:
max_gen_toks = self.max_gen_toks
### end stuff that's entirely copied verbatim from HFLM ###
max_ctx_len = self.max_length - max_gen_toks
inputs = self.tok_batch_multimodal_encode(
contexts,
visuals,
left_truncate_len=max_ctx_len,
truncation=self.truncation,
)
context_enc = inputs["input_ids"]
if "max_length" not in kwargs:
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
cont = self._model_multimodal_generate(inputs, stop=until, **kwargs)
del inputs
torch.cuda.empty_cache()
import gc
gc.collect()
### essentially same as HFLM beyond this line!
cont_toks_list = cont.tolist()
for cont_toks, context in zip(cont_toks_list, contexts):
# discard context + left-padding toks if using causal decoder-only VLM
cont_toks = cont_toks[context_enc.shape[1] :]
s = self.tok_decode(cont_toks)
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
for term in until:
if len(term) > 0:
# ignore '' separator,
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
s = s.split(term)[0]
res.append(s)
self.cache_hook.add_partial(
"generate_until", (context, gen_kwargs), s
) # TODO: cache key for multimodal input should be what?
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)
pbar.close()
return res
|