File size: 26,132 Bytes
9d5b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
import collections
import fnmatch
import gc
import itertools
import time
from functools import wraps
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Optional,
    Tuple,
    Type,
    Union,
)

import torch
import transformers

from lm_eval.utils import eval_logger


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizerBase
    from transformers.configuration_utils import PretrainedConfig


def chunks(iter, n: int = 0, fn=None):
    """
    Divides an iterable into chunks of specified size or based on a given function.
    Useful for batching

    Parameters:
    - iter: The input iterable to be divided into chunks.
    - n: An integer representing the size of each chunk. Default is 0.
    - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.

    Returns:
    An iterator that yields chunks of the input iterable.

    Example usage:
    ```
    data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    for chunk in chunks(data, 3):
        print(chunk)
    ```
    Output:
    ```
    [1, 2, 3]
    [4, 5, 6]
    [7, 8, 9]
    [10]
    ```
    """
    arr = []
    for i, x in enumerate(iter):
        arr.append(x)
        if len(arr) == (fn(i, iter) if fn else n):
            yield arr
            arr = []

    if arr:
        yield arr


class MultiChoice:
    def __init__(self, choices) -> None:
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values) -> bool:
        for value in values.split(","):
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info("Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
                raise ValueError("'{}' is not in task list".format(value))
        return True

    def __iter__(self) -> Iterator:
        for choice in self.choices:
            yield choice


class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

    def __init__(self, arr, fn) -> None:
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
    """
    assert padding_side == "left" or padding_side == "right", (
        f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
    )

    for i, tensor in enumerate(tensors):
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                        tensor,  # [seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
        else:
            tensors[i] = tensor.unsqueeze(0)

    return torch.cat(tensors, dim=0)


def clear_torch_cache() -> None:
    gc.collect()
    torch.cuda.empty_cache()


def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
    ) -> None:
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        # print(sequence, self.sequence_ids)
        # we look back for 2 more tokens than it takes to encode our stop sequence
        # because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
        # and we don't want to mistakenly not stop a generation because our
        # (string) stop sequence was output in a different tokenization

        # NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
        # and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
        # Additionally, in lookback_ids_batch we should prevent ever looking back into the inputs as described.
        self.sequence_id_len = len(self.sequence_ids) + 2
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :]

        lookback_ids_batch = lookback_ids_batch[:, -self.sequence_id_len :]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )


def undistribute(iterable):
    """
    Undoes https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.distribute .

    Re-interleaves results that have been split using more_itertools.distribute:
        >>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
        >>> list(group_1)
        [1, 3, 5]
        >>> list(group_2)
        [2, 4, 6]
        >>> undistribute([group_1, group_2])
        [1, 2, 3, 4, 5, 6]

    Handles non-uniform component lengths:

        >>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
        >>> [list(c) for c in children]
        [[1, 4, 7], [2, 5], [3, 6]]
        >>> undistribute(children)
        [1, 2, 3, 4, 5, 6, 7]

    Also handles when some iterables are empty:

        >>> children = distribute(5, [1, 2, 3])
        >>> [list(c) for c in children]
        [[1], [2], [3], [], []]
        >>> undistribute(children)
        [1, 2, 3]

    """

    return [
        x
        for x in itertools.chain.from_iterable(
            itertools.zip_longest(*[list(x) for x in iterable])
        )
        if x is not None
    ]


def retry_on_specific_exceptions(
    on_exceptions: List[Type[Exception]],
    max_retries: Optional[int] = None,
    backoff_time: float = 3.0,
    backoff_multiplier: float = 1.5,
    on_exception_callback: Optional[Callable[[Exception, float], Any]] = None,
):
    """Retry on an LLM Provider's rate limit error with exponential backoff
    For example, to use for OpenAI, do the following:
    ```
    from openai import RateLimitError

    # Recommend specifying max_retries to avoid infinite loops!
    @retry_on_specific_exceptions([RateLimitError], max_retries=3)
    def completion(...):
        # Wrap OpenAI completion function here
        ...
    ```
    """

    def decorator(func: Callable):
        @wraps(func)
        def wrapper(*args, **kwargs):
            sleep_time = backoff_time
            attempt = 0
            while max_retries is None or attempt < max_retries:
                try:
                    return func(*args, **kwargs)
                except tuple(on_exceptions) as e:
                    if on_exception_callback is not None:
                        on_exception_callback(e, sleep_time)
                    time.sleep(sleep_time)
                    sleep_time *= backoff_multiplier
                    attempt += 1

        return wrapper

    return decorator


class Collator:
    """
    A class for reordering and batching elements of an array.

    This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data.

    Objects of this class have the group_by attribute which determines the method for grouping
    the data while batching it. Three options include "gen_kwargs", "contexts", or None:
        If group_by == "gen_kwargs" then requests will be grouped by gen_kwargs
        If group_by == "contexts" then requests will be grouped by context + cont[:-1]
        If None then requests will just be reordered by length descending.
    """

    def __init__(
        self,
        arr: List,
        sort_fn: Callable = lambda x: x,
        group_fn: Callable = lambda x: x[1],
        group_by: Union[Literal["gen_kwargs", "contexts"], None] = None,
    ) -> None:
        self._group_by = group_by
        # 0 indices are enumerated indices. Apply functions to original arr.
        self._sort_fn = lambda x: sort_fn(x[1])
        self._group_fn = lambda x: group_fn(x[1])
        self._reorder_indices: List = []
        self._size = len(arr)
        self._arr_with_indices: Union[Dict, Tuple[Tuple[int, Any], ...]] = tuple(
            enumerate(arr)
        )  # [indices, (arr)]
        if self._group_by == "contexts":
            self._group_by_context()
        elif self._group_by == "gen_kwargs":
            self._group_by_index()

    def _group_by_index(self) -> None:
        """Group the elements of a list based on their indices."""
        self._arr_with_indices = self.group(
            self._arr_with_indices, fn=self._group_fn, group_by="gen_kwargs"
        )

    def _group_by_context(self) -> None:
        """Group the array with indices by context."""
        self._arr_with_indices = self.group(
            self._arr_with_indices, fn=self._group_fn, group_by="contexts"
        )

    def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator:
        """
        Generates and yields batches from the reordered array. The method of grouping and batching
        depends on the parameter `group_by`.
        If `group_by` is set to "gen_kwargs", it will batch the
        re-ordered values with same gen_kwargs for each batch.
        If `group_by` is "contexts", it caches the requests by context before batching.
        If `group_by` is neither "gen_kwargs" nor "contexts", it yields the reordered array

        Parameters:
        - n (int): The size of each batch. Defaults to 1.
        - batch_fn ([Callable[[int, Iterable], int]] | None): A function to determine the size of
          each batch. Optional, defaults to None.

        Returns:
        Iterator: An iterator over batches of reordered elements grouped as per the `group_by`
                  attribute.

        Yields:
        List of batched elements according to the `group_by` attribute.
        """
        if self._group_by == "gen_kwargs":
            for (
                key,
                values,
            ) in self._arr_with_indices.items():  # type: ignore
                values = self._reorder(values)
                batch = self.get_chunks(values, n=n, fn=batch_fn)
                yield from batch
        elif self._group_by == "contexts":
            # Get one sample from each key
            values = self._reorder(
                [value[0] for value in self._arr_with_indices.values()]
            )
            batch = self.get_chunks(values, n=n, fn=batch_fn)
            yield from batch
        else:
            values = self._reorder(self._arr_with_indices)  # type: ignore
            batch = self.get_chunks(values, n=n, fn=batch_fn)
            yield from batch

    def get_cache(
        self,
        req_str: Tuple[str, str] = None,
        cxt_toks: List[int] = None,
        cont_toks: List[int] = None,
        logits: torch.Tensor = None,
    ) -> Iterator[Tuple[Tuple[str, str], List[int], torch.Tensor]]:
        """
        Retrieves cached single-token continuations and their associated arguments, updating indices as necessary.

        The behavior of this function varies depending on how the `group_by` attribute is set:

        - When `group_by` is "contexts":
            The function identifies single-token continuations by checking for keys that equate to
            [context+continuation][-1] and logs the indices for re-ordering.
            In this mode, this function can work in two scenarios:

            1. Cache Hit - Single Match:
                If a single matching context-continuation pair is found in the cache,
                the function yields the original arguments.

            2. Cache Hit - Multiple Matches:
                If multiple matching context-continuation pairs are found in the cache,
                the function expands the logits batch dimension to match the number of cache hits.
                It updates the original requests and continuation tokens.

        - When `group_by` is not set to "contexts":
            This method yields the original arguments, logits and continuation tokens,
            without checking for one-token continuations.

        Parameters:
        - req_str (tuple[str, str]): Original strings used for CachingLM.
        - cxt_toks (list[int]): Full context tokens used for lookup.
        - cont_toks (list[int]): Continuation tokens for which logits were generated.
        - logits (torch.Tensor [1, seq_length, vocab_size]): Logits generated by the model given context and continuation keys.

        Yields:
        - Iterator:
            - req_str (tuple[str, str]): strings used for CachingLM.
            - cont_toks (list[int]) : continuation tokens.
            - logits (torch.Tensor [1, seq_length, vocab_size]): The original logits (repeated cache hit times)
        """
        if self._group_by == "contexts":
            cache_hit: List[
                Tuple[int, Tuple[Tuple[str, str], List[int], List[int]]]
            ] = self._arr_with_indices.pop(tuple(cxt_toks + cont_toks[:-1]))
            if (cache_size := len(cache_hit)) == 1:
                self._reorder_indices.extend(x[0] for x in cache_hit)
                yield req_str, cont_toks, logits
            else:
                # If we have matching requests then expand the batch dimension (no-op) and
                # yield each along with its corresponding args.
                multilogits = logits.expand(cache_size, -1, -1).chunk(cache_size)
                indices, req_str, cont_toks = zip(
                    *[(x[0], x[1][0], x[-1][-1]) for x in cache_hit]
                )
                self._reorder_indices.extend(indices)
                for c_key, cont_tok, logit in zip(req_str, cont_toks, multilogits):
                    yield c_key, cont_tok, logit
        else:
            yield req_str, cont_toks, logits

    def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> Iterator:
        """
        Reorders the elements in the array based on the sorting function.

        Parameters:
        - arr (list | tuple[tuple[int, Any], ...]]): The array or iterable to be reordered.

        Yields:
            Iterator
        """
        arr = sorted(arr, key=self._sort_fn)
        if not self._group_by == "contexts":
            # If grouped by contexts then indices will be set in get_cache()
            self._reorder_indices.extend([x[0] for x in arr])
        yield from [x[1] for x in arr]

    def get_original(self, newarr: List) -> List:
        """
        Restores the original order of elements from the reordered list.

        Parameters:
        - newarr (list): The reordered array.

        Returns:
        list: The array with elements restored to their original order.
        """
        res = [None] * self._size
        cov = [False] * self._size

        for ind, v in zip(self._reorder_indices, newarr):
            res[ind] = v
            cov[ind] = True

        assert all(cov)

        return res

    def __len__(self):
        return self._size

    @staticmethod
    def group(
        arr: Iterable,
        fn: Callable,
        group_by: Literal["gen_kwargs", "contexts"] = "gen_kwargs",
    ) -> dict:
        """
        Groups elements of an iterable based on a provided function.


        The `group_by` parameter determines the method of grouping.
        If `group_by` is "contexts", the elements are grouped by [context + cont][:-1].
        If `group_by` is "gen_kwargs", the elements are grouped based on the gen_kwargs dict.

        Parameters:
        - arr (Iterable): The iterable to be grouped.
        - fn (Callable): The function to determine the grouping.
        - values (bool): If True, returns the values of the group. Defaults to False.

        Returns:
        Iterator: An iterable of grouped elements.
        """
        res = collections.defaultdict(list)
        for ob in arr:
            # where ob == [context + cont]
            if group_by == "contexts":
                res[tuple(fn(ob))].append(ob)
            else:
                try:
                    hashable_dict = tuple(
                        (
                            key,
                            tuple(value)
                            if isinstance(value, collections.abc.Iterable)
                            else value,
                        )
                        for key, value in sorted(fn(ob).items())
                    )
                    res[hashable_dict].append(ob)
                except (TypeError, AttributeError):
                    res[tuple(fn(ob))].append(ob)
        return res

    @staticmethod
    def get_chunks(_iter, n: int = 0, fn=None):
        """
        Divides an iterable into chunks of specified size or based on a given function.
        Useful for batching

        Parameters:
        - iter: The input iterable to be divided into chunks.
        - n: An integer representing the size of each chunk. Default is 0.
        - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.

        Returns:
        An iterator that yields chunks of the input iterable.

        Example usage:
        ```
        data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        for chunk in chunks(data, 3):
            print(chunk)
        ```
        Output:
        ```
        [1, 2, 3]
        [4, 5, 6]
        [7, 8, 9]
        [10]
        ```
        """
        arr = []
        _iter = tuple(_iter)
        for i, x in enumerate(_iter):
            arr.append(x)
            if len(arr) == (fn(i, _iter) if fn else n):
                yield arr
                arr = []

        if arr:
            yield arr


def configure_pad_token(
    tokenizer: "PreTrainedTokenizerBase",
    model_config: Optional["PretrainedConfig"] = None,
) -> "PreTrainedTokenizerBase":
    """
    This function checks if the (Hugging Face) tokenizer has a padding token and sets it if not present.
    Some tokenizers require special handling.

    Args:
        tokenizer: The tokenizer for which the padding token is to be handled.
        model_config: The configuration of the model. Default is None.

    Returns:
        The tokenizer after the padding token has been handled.

    Raises:
        AssertionError: If the tokenizer is of type RWKVWorldTokenizer or Rwkv5Tokenizer and the padding token id is not 0.
    """
    if tokenizer.pad_token:
        pass
    elif tokenizer.unk_token:
        tokenizer.pad_token_id = tokenizer.unk_token_id
    elif tokenizer.eos_token:
        tokenizer.pad_token_id = tokenizer.eos_token_id
    else:
        # handle special cases
        if model_config and getattr(model_config, "model_type", None) == "qwen":
            # Qwen's trust_remote_code tokenizer does not allow for adding special tokens
            tokenizer.pad_token = "<|endoftext|>"
        elif (
            tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
            or tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
        ):
            # The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
            # The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
            # ---
            # Note that the world tokenizer class name, might change in the future for the final huggingface merge
            # https://github.com/huggingface/transformers/pull/26963
            assert tokenizer.pad_token_id == 0
        else:
            tokenizer.add_special_tokens({"pad_token": "<|pad|>"})

    return tokenizer


def replace_placeholders(
    string: str, default_placeholder: str, image_token: str, max_images: int
):
    """
    A utility function used for local multimodal models. It locates all `placeholder` string
    occurrences in the given input `string_` and replaces the first `max_count` instances with
    `replacement`, and all subsequent occurrences with the empty string.

    This is used to replace <image> placeholder tags by model-specific image tokens like <|image_pad|>
    and to allow for only the first `max_count` images to be passed to a model if desired.

    :param string: The original string containing placeholders.
    :param default_placeholder: The placeholder text to be replaced.
    :param image_token: The token to replace the placeholder with.
    :param max_images: The maximum number of replacements to make.
    :return: The string with placeholders replaced.
    """
    count = 0
    result = []

    parts = string.split(default_placeholder)
    for part in parts[:-1]:  # Iterate through all but the last part
        result.append(part)
        if count < max_images:
            result.append(image_token)
            count += 1
        elif default_placeholder != image_token:
            result.append(default_placeholder)

    # Add the last part of the string
    result.append(parts[-1])
    return "".join(result)


def flatten_image_list(images: List[List]):
    """
    Takes in a list of lists of images, and returns a single list of all images in order.
    Used for some multimodal models like Llava-1.5 which expects this flattened-list format for its image processor.

    :param images: A list of lists of PIL images.
    :return: a list of PIL images, via concatenating all the sub-lists in order.
    """
    return [image for image_list in images for image in image_list]


def handle_stop_sequences(
    until: Union[str, List[str], None], eos: Optional[str]
) -> List[str]:
    """Ensures that the `until` parameter is a list of stop sequences and includes the EOS token."""
    if isinstance(until, str):
        until = [until]
    elif until is None:
        until = []
    elif not isinstance(until, list):
        raise ValueError(
            f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
        )

    if eos is not None and eos not in until:
        until.append(eos)
    return until