File size: 9,218 Bytes
9d5b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import re
import signal
from typing import Dict, List, Optional

import datasets

from lm_eval.utils import eval_logger


try:
    import sympy
    from sympy.parsing.latex import parse_latex
except ModuleNotFoundError:
    raise ModuleNotFoundError(
        "`sympy` is required for generating translation task prompt templates. \
please install sympy via pip install lm-eval[math] or pip install -e .[math]",
    )


# taken from
# https://github.com/wellecks/lm-evaluation-harness/blob/master/lm_eval/tasks/minerva_math.py
def doc_to_text(doc: dict) -> str:
    return "Problem:" + "\n" + doc["problem"] + "\n\n" + "Solution:"


def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
    def _process_doc(doc: dict) -> dict:
        out_doc = {
            "problem": doc["problem"],
            "solution": doc["solution"],
            "answer": normalize_final_answer(
                remove_boxed(last_boxed_only_string(doc["solution"]))
            ),
        }
        if getattr(doc, "few_shot", None) is not None:
            out_doc["few_shot"] = True
        return out_doc

    return dataset.map(_process_doc)


def list_fewshot_samples() -> list[dict]:
    return [
        {
            "problem": "Find the domain of the expression  $\\frac{\\sqrt{x-2}}{\\sqrt{5-x}}$.}",
            "solution": "The expressions inside each square root must be non-negative. Therefore, $x-2 \\ge 0$, so $x\\ge2$, and $5 - x \\ge 0$, so $x \\le 5$. Also, the denominator cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression is $\\boxed{[2,5)}$.\nFinal Answer: The final answer is $[2,5)$. I hope it is correct.",
            "few_shot": "1",
        },
        {
            "problem": "If $\\det \\mathbf{A} = 2$ and $\\det \\mathbf{B} = 12,$ then find $\\det (\\mathbf{A} \\mathbf{B}).$",
            "solution": "We have that $\\det (\\mathbf{A} \\mathbf{B}) = (\\det \\mathbf{A})(\\det \\mathbf{B}) = (2)(12) = \\boxed{24}.$\nFinal Answer: The final answer is $24$. I hope it is correct.",
            "few_shot": "1",
        },
        {
            "problem": "Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times must Terrell lift them in order to lift the same total weight?",
            "solution": "If Terrell lifts two 20-pound weights 12 times, he lifts a total of $2\\cdot 12\\cdot20=480$ pounds of weight.  If he lifts two 15-pound weights instead for $n$ times, he will lift a total of $2\\cdot15\\cdot n=30n$ pounds of weight.  Equating this to 480 pounds, we can solve for $n$:\n\\begin{align*}\n30n&=480\\\n\\Rightarrow\\qquad n&=480/30=\\boxed{16}\n\\end{align*}\nFinal Answer: The final answer is $16$. I hope it is correct.",
            "few_shot": "1",
        },
        {
            "problem": "If the system of equations\n\n\\begin{align*}\n6x-4y&=a,\\\n6y-9x &=b.\n\\end{align*}has a solution $(x, y)$ where $x$ and $y$ are both nonzero,\nfind $\\frac{a}{b},$ assuming $b$ is nonzero.",
            "solution": "If we multiply the first equation by $-\\frac{3}{2}$, we obtain\n\n$$6y-9x=-\\frac{3}{2}a.$$Since we also know that $6y-9x=b$, we have\n\n$$-\\frac{3}{2}a=b\\Rightarrow\\frac{a}{b}=\\boxed{-\\frac{2}{3}}.$$\nFinal Answer: The final answer is $-\\frac{2}{3}$. I hope it is correct.",
            "few_shot": "1",
        },
    ]


def process_results(doc: dict, results: List[str]) -> Dict[str, int]:
    candidates = results[0]

    unnormalized_answer = get_unnormalized_answer(candidates)
    answer = normalize_final_answer(unnormalized_answer)

    if is_equiv(answer, doc["answer"]):
        retval = 1
    else:
        retval = 0

    results = {
        "exact_match": retval,
    }
    return results


def last_boxed_only_string(string: str) -> Optional[str]:
    idx = string.rfind("\\boxed")
    if "\\boxed " in string:
        return "\\boxed " + string.split("\\boxed ")[-1].split("$")[0]
    if idx < 0:
        idx = string.rfind("\\fbox")
        if idx < 0:
            return None

    i = idx
    right_brace_idx = None
    num_left_braces_open = 0
    while i < len(string):
        if string[i] == "{":
            num_left_braces_open += 1
        if string[i] == "}":
            num_left_braces_open -= 1
            if num_left_braces_open == 0:
                right_brace_idx = i
                break
        i += 1

    if right_brace_idx is None:
        retval = None
    else:
        retval = string[idx : right_brace_idx + 1]

    return retval


def remove_boxed(s: str) -> str:
    if "\\boxed " in s:
        left = "\\boxed "
        assert s[: len(left)] == left
        return s[len(left) :]

    left = "\\boxed{"

    assert s[: len(left)] == left
    assert s[-1] == "}"

    return s[len(left) : -1]


class timeout:
    def __init__(self, seconds=1, error_message="Timeout"):
        self.seconds = seconds
        self.error_message = error_message

    def handle_timeout(self, signum, frame):
        raise TimeoutError(self.error_message)

    def __enter__(self):
        signal.signal(signal.SIGALRM, self.handle_timeout)
        signal.alarm(self.seconds)

    def __exit__(self, type, value, traceback):
        signal.alarm(0)


def is_equiv(x1: str, x2: str) -> bool:
    """
    x1 and x2 are normalized latex string
    """
    try:
        with timeout(seconds=5):
            try:
                parsed_x1 = parse_latex(x1)
                parsed_x2 = parse_latex(x2)
            except (
                sympy.parsing.latex.errors.LaTeXParsingError,
                sympy.SympifyError,
                TypeError,
            ):
                eval_logger.debug(f"couldn't parse one of {x1} or {x2}")
                return False

            try:
                diff = parsed_x1 - parsed_x2
            except TypeError:
                eval_logger.debug(f"couldn't subtract {x1} and {x2}")
                return False

            try:
                if sympy.simplify(diff) == 0:
                    return True
                else:
                    return False
            except ValueError:
                eval_logger.debug(
                    f"Had some trouble simplifying when comparing {x1} and {x2}"
                )
    except TimeoutError:
        eval_logger.debug(f"Timed out comparing {x1} and {x2}")
        return False
    except ImportError as e:
        eval_logger.error(e)
        raise
    except Exception as e:
        eval_logger.debug(f"Failed comparing {x1} and {x2} with {e}")
        return False


def get_unnormalized_answer(text: str) -> str:
    INVALID_ANSWER = "[invalidanswer]"
    end_seq = "I hope it is correct."
    text += end_seq
    match = re.search(
        r"Final Answer: The final answer is(.*?). I hope it is correct.",
        text,
    )
    if match:
        return match.group(1).strip()
    else:
        return INVALID_ANSWER


SUBSTITUTIONS = [
    ("an ", ""),
    ("a ", ""),
    (".$", "$"),
    ("\\$", ""),
    (r"\ ", ""),
    (" ", ""),
    ("mbox", "text"),
    (",\\text{and}", ","),
    ("\\text{and}", ","),
    ("\\text{m}", "\\text{}"),
]
REMOVED_EXPRESSIONS = [
    "square",
    "ways",
    "integers",
    "dollars",
    "mph",
    "inches",
    "ft",
    "hours",
    "km",
    "units",
    "\\ldots",
    "sue",
    "points",
    "feet",
    "minutes",
    "digits",
    "cents",
    "degrees",
    "cm",
    "gm",
    "pounds",
    "meters",
    "meals",
    "edges",
    "students",
    "childrentickets",
    "multiples",
    "\\text{s}",
    "\\text{.}",
    "\\text{\ns}",
    "\\text{}^2",
    "\\text{}^3",
    "\\text{\n}",
    "\\text{}",
    r"\mathrm{th}",
    r"^\circ",
    r"^{\circ}",
    r"\;",
    r",\!",
    "{,}",
    '"',
    "\\dots",
]


def normalize_final_answer(final_answer: str) -> str:
    """
    Normalize a final answer to a quantitative reasoning question.

    Copied character for character from appendix D of Lewkowycz et al. (2022)
    """
    final_answer = final_answer.split("=")[-1]

    for before, after in SUBSTITUTIONS:
        final_answer = final_answer.replace(before, after)
    for expr in REMOVED_EXPRESSIONS:
        final_answer = final_answer.replace(expr, "")

    # Extract answer that is in LaTeX math, is bold,
    # is surrounded by a box, etc.
    final_answer = re.sub(r"(.*?)(\$)(.*?)(\$)(.*)", "$\\3$", final_answer)
    final_answer = re.sub(r"(\\text\{)(.*?)(\})", "\\2", final_answer)
    final_answer = re.sub(r"(\\textbf\{)(.*?)(\})", "\\2", final_answer)
    final_answer = re.sub(r"(\\overline\{)(.*?)(\})", "\\2", final_answer)
    final_answer = re.sub(r"(\\boxed\{)(.*)(\})", "\\2", final_answer)

    # Normalize shorthand TeX:
    #  \fracab -> \frac{a}{b}
    #  \frac{abc}{bef} -> \frac{abc}{bef}
    #  \fracabc -> \frac{a}{b}c
    #  \sqrta -> \sqrt{a}
    #  \sqrtab -> sqrt{a}b
    final_answer = re.sub(r"(frac)([^{])(.)", "frac{\\2}{\\3}", final_answer)
    final_answer = re.sub(r"(sqrt)([^{])", "sqrt{\\2}", final_answer)
    final_answer = final_answer.replace("$", "")

    # Normalize 100,000 -> 100000
    if final_answer.replace(",", "").isdigit():
        final_answer = final_answer.replace(",", "")

    return final_answer