File size: 14,814 Bytes
9d5b280 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import re
from abc import abstractmethod
from functools import reduce
import numpy as np
import transformers.data.metrics.squad_metrics as squad_metrics
from datasets import Dataset
from evaluate import load
from transformers import AutoTokenizer
from lm_eval.api.instance import Instance
from lm_eval.api.metrics import mean
from lm_eval.api.task import ConfigurableTask
_CITATION = """
@inproceedings{shaham-etal-2022-scrolls,
title = "{SCROLLS}: Standardized {C}ompa{R}ison Over Long Language Sequences",
author = "Shaham, Uri and
Segal, Elad and
Ivgi, Maor and
Efrat, Avia and
Yoran, Ori and
Haviv, Adi and
Gupta, Ankit and
Xiong, Wenhan and
Geva, Mor and
Berant, Jonathan and
Levy, Omer",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.823",
pages = "12007--12021"
}
"""
# SCROLLS is formualted as a sequence-to-sequence task.
# To allow for evaluation of causal models, we'll
# reformualte these with appropriate prompts
def _download_metric():
import os
import shutil
from huggingface_hub import hf_hub_download
scrolls_metric_path = hf_hub_download(
repo_id="tau/scrolls",
repo_type="dataset",
filename="metrics/scrolls.py",
revision="refs/pr/5",
)
updated_scrolls_metric_path = (
os.path.dirname(scrolls_metric_path)
+ os.path.basename(scrolls_metric_path).replace(".", "_")
+ ".py"
)
shutil.copy(scrolls_metric_path, updated_scrolls_metric_path)
return updated_scrolls_metric_path
def _process_doc_prepended_question(doc):
# "When a query is given in addition to the raw text (as
# in QMSum, Qasper, NarrativeQA, QuALITY, and ContractNLI),
# we prepend it to the text, using two newlines as a natural separator"
input = doc["input"]
split = input.find("\n\n")
return {
"id": doc["id"],
"pid": doc["pid"],
"input": input,
"outputs": doc["outputs"],
"question": input[0:split],
"text": input[split + 2 :],
}
def _drop_duplicates_in_input(untokenized_dataset):
# from scrolls/evaluator/dataset_evaluator.py
indices_to_keep = []
id_to_idx = {}
outputs = []
for i, (id_, output) in enumerate(
zip(untokenized_dataset["id"], untokenized_dataset["output"])
):
if id_ in id_to_idx:
outputs[id_to_idx[id_]].append(output)
continue
indices_to_keep.append(i)
id_to_idx[id_] = len(outputs)
outputs.append([output])
untokenized_dataset = untokenized_dataset.select(indices_to_keep).flatten_indices()
untokenized_dataset = untokenized_dataset.remove_columns("output")
untokenized_dataset = untokenized_dataset.add_column("outputs", outputs)
return untokenized_dataset
def _num_cpu_cores():
# https://stackoverflow.com/questions/1006289/how-to-find-out-the-number-of-cpus-using-python/55423170#55423170
try:
import psutil
return psutil.cpu_count(logical=False)
except ImportError:
import os
return len(os.sched_getaffinity(0))
class _SCROLLSTask(ConfigurableTask):
VERSION = 2
DATASET_PATH = "tau/scrolls"
DATASET_NAME = None
PRUNE_TOKENIZERS = None
PRUNE_MAX_TOKENS = None
PRUNE_NUM_PROC = None
def __init__(self, config=None):
super().__init__(config={"metadata": {"version": self.VERSION}})
if self.DATASET_NAME is not None:
self.metric = load(_download_metric(), config_name=self.DATASET_NAME)
def has_training_docs(self):
return True
def has_validation_docs(self):
return True
def has_test_docs(self):
return False
def training_docs(self):
processed_docs = list(map(self._process_doc, self.dataset["train"]))
# Flatten the list of lists since _process_doc returns a list of one element.
processed_docs = [item for sublist in processed_docs for item in sublist]
processed_dict = {
key: [d[key] for d in processed_docs] for key in processed_docs[0]
}
return Dataset.from_dict(processed_dict)
def validation_docs(self):
processed_docs = list(map(self._process_doc, self.dataset["validation"]))
# Flatten the list of lists since _process_doc returns a list of one element.
processed_docs = [item for sublist in processed_docs for item in sublist]
processed_dict = {
key: [d[key] for d in processed_docs] for key in processed_docs[0]
}
return Dataset.from_dict(processed_dict)
def should_decontaminate(self):
return True
def doc_to_decontamination_query(self, doc):
return doc["input"]
def download(self, *args, **kwargs):
super().download(*args, **kwargs)
del self.dataset["test"]
for split in self.dataset:
self.dataset[split] = _drop_duplicates_in_input(self.dataset[split])
if self.PRUNE_TOKENIZERS is not None:
self.prune()
def _get_prune_text(self, sample):
return self.doc_to_text(self._process_doc(sample)[0])
def prune(self):
"""Create a pruned version of a SCROLLS task dataset containing only inputs
that are less than `max_tokens` when tokenized by each tokenizer
"""
tokenizers = [
AutoTokenizer.from_pretrained(tokenizer)
for tokenizer in self.PRUNE_TOKENIZERS
]
cache = {}
def _filter(sample):
text = self._get_prune_text(sample)
cached = cache.get(text, None)
if cached is None:
for tokenizer in tokenizers:
if len(tokenizer(text).input_ids) > self.PRUNE_MAX_TOKENS:
cache[text] = False
return False
cache[text] = True
return True
else:
return cached
self.dataset = self.dataset.filter(_filter, num_proc=self.PRUNE_NUM_PROC)
def doc_to_target(self, doc):
return " " + ", ".join(doc["outputs"])
def doc_to_text(self, doc):
return f"{doc['text']}\n\nQuestion: {doc['question']}\nAnswer:"
def higher_is_better(self):
return {x: True for x in self._scrolls_metrics().keys()}
@abstractmethod
def _scrolls_metrics(self):
pass
def _make_compute_metrics(self, value):
def compute_metrics(samples):
predictions, references = zip(*samples) # unzip, if you will
computed = self.metric.compute(
predictions=predictions, references=references
)
return computed[value]
return compute_metrics
def aggregation(self):
return {
key: self._make_compute_metrics(value)
for key, value in self._scrolls_metrics().items()
}
class _SCROLLSMultipleChoiceTask(_SCROLLSTask):
def __post_init__(self):
self.metric = None
def _scrolls_metrics(self):
return None
def aggregation(self):
return {"em": mean, "acc": mean, "acc_norm": mean}
def higher_is_better(self):
return {"em": True, "acc": True, "acc_norm": True}
def process_results(self, doc, results):
gold = doc["gold"]
lls, _ = zip(*results)
acc = 1.0 if np.argmax(lls) == gold else 0.0
completion_len = np.array([float(len(i)) for i in doc["choices"]])
acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
return {
"acc": acc,
"acc_norm": acc_norm,
"em": acc_norm * 100.0,
}
def construct_requests(self, doc, ctx, **kwargs):
apply_chat_template = kwargs.pop("apply_chat_template", False)
request_list = [
Instance(
request_type="loglikelihood",
doc=doc,
arguments=(ctx, " {}".format(choice))
if not apply_chat_template
else (ctx, "{}".format(choice)),
idx=i,
**kwargs,
)
for i, choice in enumerate(doc["choices"])
]
return request_list
class _SCROLLSSummaryTask(_SCROLLSTask):
def _process_doc(self, doc):
return [doc]
def _scrolls_metrics(self):
return {
"rouge1": "rouge/rouge1",
"rouge2": "rouge/rouge2",
"rougeL": "rouge/rougeL",
}
def process_results(self, doc, results):
return {
"rouge1": (results[0], doc["outputs"]),
"rouge2": (results[0], doc["outputs"]),
"rougeL": (results[0], doc["outputs"]),
}
def construct_requests(self, doc, ctx, **kwargs):
kwargs.pop("apply_chat_template", False)
return Instance(
request_type="generate_until",
doc=doc,
arguments=(ctx, {"until": ["\n"]}),
idx=0,
**kwargs,
)
def doc_to_text(self, doc):
return f"{doc['input']}\n\nQuestion: What is a summary of the preceding text?\nAnswer:"
class Qasper(_SCROLLSTask):
"""A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
https://arxiv.org/abs/2105.03011
"""
DATASET_NAME = "qasper"
def _process_doc(self, doc):
doc = _process_doc_prepended_question(doc)
doc["is_yes_no"] = reduce(
lambda prev, cur: prev
and squad_metrics.normalize_answer(cur) in ["yes", "no"],
doc["outputs"],
True,
)
return [doc]
def _scrolls_metrics(self):
return {"f1": "f1"}
def process_results(self, doc, results):
if doc["is_yes_no"]:
prediction = " yes" if results[0] > results[1] else " no"
elif len(results[0].strip()) == 0:
prediction = "Unanswerable"
else:
prediction = results[0]
return {"f1": (prediction, doc["outputs"])}
def construct_requests(self, doc, ctx, **kwargs):
apply_chat_template = kwargs.pop("apply_chat_template", False)
if doc["is_yes_no"]:
return [
Instance(
request_type="loglikelihood",
doc=doc,
arguments=(ctx, " yes")
if not apply_chat_template
else (ctx, "yes"),
idx=0,
**kwargs,
),
Instance(
request_type="loglikelihood",
doc=doc,
arguments=(ctx, " no") if not apply_chat_template else (ctx, "no"),
idx=1,
**kwargs,
),
]
else:
return Instance(
request_type="generate_until",
doc=doc,
arguments=(ctx, {"until": ["\n"]}),
idx=0,
**kwargs,
)
class QuALITY(_SCROLLSMultipleChoiceTask):
"""QuALITY: Question Answering with Long Input Texts, Yes!
https://arxiv.org/abs/2112.08608
"""
DATASET_NAME = "quality"
_multiple_choice_pattern = re.compile(r" *\([A-D]\) *")
@staticmethod
def _normalize_answer(text):
return " ".join(text.split()).strip()
def _process_doc(self, doc):
doc = _process_doc_prepended_question(doc)
split = doc["text"].find("\n\n", doc["text"].find("(D)"))
choices_text = doc["text"][:split]
doc["text"] = doc["text"][split:].strip()
doc["choices"] = [
QuALITY._normalize_answer(choice)
for choice in re.split(QuALITY._multiple_choice_pattern, choices_text)[1:]
]
doc["gold"] = doc["choices"].index(QuALITY._normalize_answer(doc["outputs"][0]))
return [doc]
class NarrativeQA(_SCROLLSTask):
"""The NarrativeQA Reading Comprehension Challenge
https://arxiv.org/abs/1712.07040
"""
DATASET_NAME = "narrative_qa"
def _process_doc(self, doc):
return [_process_doc_prepended_question(doc)]
def _scrolls_metrics(self):
return {"f1": "f1"}
def _get_prune_text(self, doc):
# pruning narrativeqa takes forever -- let's cheat a bit
# and just cache on the text, not the question, since
# the dataset is different questions about the same large
# documents
return self._process_doc(doc)[0]["text"]
def process_results(self, doc, results):
return {"f1": (results[0], doc["outputs"])}
def construct_requests(self, doc, ctx, **kwargs):
kwargs.pop("apply_chat_template", False)
return Instance(
request_type="generate_until",
doc=doc,
arguments=(ctx, {"until": ["\n"]}),
idx=0,
**kwargs,
)
class ContractNLI(_SCROLLSMultipleChoiceTask):
"""ContractNLI: A Dataset for Document-level Natural Language Inference for Contracts
https://arxiv.org/abs/1712.07040
"""
DATASET_NAME = "contract_nli"
CHOICES = ["Not mentioned", "Entailment", "Contradiction"]
def _process_doc(self, doc):
doc = _process_doc_prepended_question(doc)
doc["choices"] = ContractNLI.CHOICES
doc["gold"] = ContractNLI.CHOICES.index(doc["outputs"][0])
return [doc]
def doc_to_text(self, doc):
return f"{doc['text']}\n\nHypothesis: {doc['question']}\nConclusion:"
class GovReport(_SCROLLSSummaryTask):
"""Efficient Attentions for Long Document Summarization
https://arxiv.org/abs/2104.02112
Note: The average length of the reference summaries is ~3,000
characters, or ~600 tokens as tokenized by GPT-NeoX. For causal models,
it is recommended to set `max_gen_toks` sufficiently large (e.g. 1024)
to allow a full summary to be generated.
"""
DATASET_NAME = "gov_report"
class SummScreenFD(_SCROLLSSummaryTask):
"""SummScreen: A Dataset for Abstractive Screenplay Summarization
https://arxiv.org/abs/2104.07091
"""
DATASET_NAME = "summ_screen_fd"
class QMSum(_SCROLLSSummaryTask):
"""QMSum: A New Benchmark for Query-based Multi-domain
Meeting Summarization
https://arxiv.org/abs/2104.05938
"""
DATASET_NAME = "qmsum"
def _process_doc(self, doc):
return [_process_doc_prepended_question(doc)]
def doc_to_text(self, doc):
return f"{doc['text']}\n\nQuestion: {doc['question']}\nAnswer:"
|