File size: 6,249 Bytes
9d5b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import datasets
import numpy as np
import sacrebleu
from rouge_score import rouge_scorer, scoring


ROUGE_SCORER = None


def process_results_mc2(doc, results):
    lls, is_greedy = zip(*results)

    # Split on the first `0` as everything before it is true (`1`).
    split_idx = list(doc["mc2_targets"]["labels"]).index(0)
    # Compute the normalized probability mass for the correct answer.
    ll_true, ll_false = lls[:split_idx], lls[split_idx:]
    p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))
    p_true = p_true / (sum(p_true) + sum(p_false))

    return {"acc": sum(p_true)}


def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:
    return dataset.map(preprocess_function)


def preprocess_function(examples):
    def _format_answers(answers):
        formatted_answers = []
        for answer in answers:
            answer = answer.strip()
            if len(answer):
                # Add a period after all answers.
                if answer[-1] != ".":
                    formatted_answers.append(answer + ".")
                else:
                    formatted_answers.append(answer)
        return formatted_answers

    incorrect_answers = _format_answers(examples["incorrect_answers"])
    correct_answers = _format_answers(examples["correct_answers"])
    if "I have no comment." not in correct_answers:
        correct_answers.append("I have no comment.")
    return {
        "question": examples["question"].strip(),
        "correct_answers": correct_answers,
        "incorrect_answers": incorrect_answers,
    }


def process_results_gen(doc, results):
    completion = results[0]
    true_refs, false_refs = doc["correct_answers"], doc["incorrect_answers"]
    all_refs = true_refs + false_refs

    # Process the sentence-level BLEURT, BLEU, and ROUGE for similarity measures.

    # # BLEURT
    # bleurt_scores_true = self.bleurt.compute(
    #     predictions=[completion] * len(true_refs), references=true_refs
    # )["scores"]
    # bleurt_scores_false = self.bleurt.compute(
    #     predictions=[completion] * len(false_refs), references=false_refs
    # )["scores"]
    # bleurt_correct = max(bleurt_scores_true)
    # bleurt_incorrect = max(bleurt_scores_false)
    # bleurt_max = bleurt_correct
    # bleurt_diff = bleurt_correct - bleurt_incorrect
    # bleurt_acc = int(bleurt_correct > bleurt_incorrect)

    # BLEU
    bleu_scores = [bleu([[ref]], [completion]) for ref in all_refs]
    bleu_correct = np.nanmax(bleu_scores[: len(true_refs)])
    bleu_incorrect = np.nanmax(bleu_scores[len(true_refs) :])
    bleu_max = bleu_correct
    bleu_diff = bleu_correct - bleu_incorrect
    bleu_acc = int(bleu_correct > bleu_incorrect)

    # ROUGE-N
    rouge_scores = [rouge([ref], [completion]) for ref in all_refs]
    # ROUGE-1
    rouge1_scores = [score["rouge1"] for score in rouge_scores]
    rouge1_correct = np.nanmax(rouge1_scores[: len(true_refs)])
    rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs) :])
    rouge1_max = rouge1_correct
    rouge1_diff = rouge1_correct - rouge1_incorrect
    rouge1_acc = int(rouge1_correct > rouge1_incorrect)
    # ROUGE-2
    rouge2_scores = [score["rouge2"] for score in rouge_scores]
    rouge2_correct = np.nanmax(rouge2_scores[: len(true_refs)])
    rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs) :])
    rouge2_max = rouge2_correct
    rouge2_diff = rouge2_correct - rouge2_incorrect
    rouge2_acc = int(rouge2_correct > rouge2_incorrect)
    # ROUGE-L
    rougeL_scores = [score["rougeLsum"] for score in rouge_scores]
    rougeL_correct = np.nanmax(rougeL_scores[: len(true_refs)])
    rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs) :])
    rougeL_max = rougeL_correct
    rougeL_diff = rougeL_correct - rougeL_incorrect
    rougeL_acc = int(rougeL_correct > rougeL_incorrect)

    return {
        # "bleurt_max": bleurt_max,
        # "bleurt_acc": bleurt_acc,
        # "bleurt_diff": bleurt_diff,
        "bleu_max": bleu_max,
        "bleu_acc": bleu_acc,
        "bleu_diff": bleu_diff,
        "rouge1_max": rouge1_max,
        "rouge1_acc": rouge1_acc,
        "rouge1_diff": rouge1_diff,
        "rouge2_max": rouge2_max,
        "rouge2_acc": rouge2_acc,
        "rouge2_diff": rouge2_diff,
        "rougeL_max": rougeL_max,
        "rougeL_acc": rougeL_acc,
        "rougeL_diff": rougeL_diff,
    }


def bleu(refs, preds):
    """
    Returns `t5` style BLEU scores. See the related implementation:
    https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L41

    :param refs:
        A `list` of `list` of reference `str`s.
    :param preds:
        A `list` of predicted `str`s.
    """
    score = sacrebleu.corpus_bleu(
        preds,
        refs,
        smooth_method="exp",
        smooth_value=0.0,
        force=False,
        lowercase=False,
        tokenize="intl",
        use_effective_order=False,
    ).score
    return score


def rouge(refs, preds):
    """
    Returns `t5` style ROUGE scores. See the related implementation:
    https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L68

    :param refs:
        A `list` of reference `strs`.
    :param preds:
        A `list` of predicted `strs`.
    """

    rouge_types = ["rouge1", "rouge2", "rougeLsum"]

    global ROUGE_SCORER
    if ROUGE_SCORER is None:
        # init RougeScorer once (https://github.com/EleutherAI/lm-evaluation-harness/issues/1692)--rouge_types are constant
        ROUGE_SCORER = rouge_scorer.RougeScorer(rouge_types)
    scorer = ROUGE_SCORER
    # Add newlines between sentences to correctly compute `rougeLsum`.

    def _prepare_summary(summary):
        summary = summary.replace(" . ", ".\n")
        return summary

    # Accumulate confidence intervals.
    aggregator = scoring.BootstrapAggregator()
    for ref, pred in zip(refs, preds):
        ref = _prepare_summary(ref)
        pred = _prepare_summary(pred)
        aggregator.add_scores(scorer.score(ref, pred))
    result = aggregator.aggregate()
    return {type: result[type].mid.fmeasure * 100 for type in rouge_types}