BayesTensor's picture
Upload folder using huggingface_hub
9d5b280 verified
import abc
from dataclasses import asdict, dataclass
from inspect import getsource
from typing import Any, Callable, List, Optional, Union
@dataclass
class AggMetricConfig(dict):
metric: Optional[str] = None
aggregation: Optional[str] = "mean"
weight_by_size: Optional[str] = False
# list of filter names which should be incorporated into the aggregated metric.
filter_list: Optional[Union[str, list]] = "none"
def __post_init__(self):
if self.aggregation != "mean" and not callable(self.aggregation):
raise ValueError(
f"Currently, 'mean' is the only pre-defined aggregation across groups' subtasks. Got '{self.aggregation}'."
)
if isinstance(self.filter_list, str):
self.filter_list = [self.filter_list]
@dataclass
class GroupConfig(dict):
group: Optional[str] = None
group_alias: Optional[str] = None
task: Optional[Union[str, list]] = None
aggregate_metric_list: Optional[
Union[List[AggMetricConfig], AggMetricConfig, dict]
] = None
metadata: Optional[dict] = (
None # by default, not used in the code. allows for users to pass arbitrary info to tasks
)
def __getitem__(self, item):
return getattr(self, item)
def __setitem__(self, item, value):
return setattr(self, item, value)
def __post_init__(self):
if self.aggregate_metric_list is not None:
if isinstance(self.aggregate_metric_list, dict):
self.aggregate_metric_list = [self.aggregate_metric_list]
self.aggregate_metric_list = [
AggMetricConfig(**item) if isinstance(item, dict) else item
for item in self.aggregate_metric_list
]
def to_dict(self, keep_callable: bool = False) -> dict:
"""dumps the current config as a dictionary object, as a printable format.
null fields will not be printed.
Used for dumping results alongside full task configuration
:return: dict
A printable dictionary version of the TaskConfig object.
# TODO: should any default value in the TaskConfig not be printed?
"""
cfg_dict = asdict(self)
# remove values that are `None`
for k, v in list(cfg_dict.items()):
if callable(v):
cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
return cfg_dict
def serialize_function(
self, value: Union[Callable, str], keep_callable=False
) -> Union[Callable, str]:
"""Serializes a given function or string.
If 'keep_callable' is True, the original callable is returned.
Otherwise, attempts to return the source code of the callable using 'getsource'.
"""
if keep_callable:
return value
else:
try:
return getsource(value)
except (TypeError, OSError):
return str(value)
class ConfigurableGroup(abc.ABC):
def __init__(
self,
config: Optional[dict] = None,
) -> None:
self._config = GroupConfig(**config)
@property
def group(self):
return self._config.group
@property
def group_alias(self):
return self._config.group_alias
@property
def version(self):
return self._config.version
@property
def config(self):
return self._config.to_dict()
@property
def group_name(self) -> Any:
return self._config.group
def __repr__(self):
return f"ConfigurableGroup(group={self.group},group_alias={self.group_alias})"