out / lm-evaluation-harness /lm_eval /models /openai_completions.py
BayesTensor's picture
Upload folder using huggingface_hub
9d5b280 verified
import os
from functools import cached_property
from operator import itemgetter
from typing import Any, Dict, List, Optional, Tuple, Union
from lm_eval.api.registry import register_model
from lm_eval.models.api_models import TemplateAPI
from lm_eval.models.utils import handle_stop_sequences
from lm_eval.utils import eval_logger
@register_model("local-completions")
class LocalCompletionsAPI(TemplateAPI):
def __init__(
self,
base_url=None,
tokenizer_backend="huggingface",
**kwargs,
):
super().__init__(
base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
)
def _create_payload(
self,
messages: Union[List[List[int]], List[dict], List[str], str],
generate=False,
gen_kwargs: Optional[dict] = None,
seed: int = 1234,
eos=None,
**kwargs,
) -> dict:
if generate:
gen_kwargs.pop("do_sample", False)
if "max_tokens" in gen_kwargs:
max_tokens = gen_kwargs.pop("max_tokens")
else:
max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
temperature = gen_kwargs.pop("temperature", 0)
stop = handle_stop_sequences(gen_kwargs.pop("until", None), eos)
return {
"prompt": messages,
"model": self.model,
"max_tokens": max_tokens,
"temperature": temperature,
"stop": stop,
"seed": seed,
**gen_kwargs,
}
else:
return {
"model": self.model,
"prompt": messages,
"temperature": 0,
"max_tokens": 1,
"logprobs": 1,
"seed": seed,
"echo": True,
}
@staticmethod
def parse_logprobs(
outputs: Union[Dict, List[Dict]],
tokens: List[List[int]] = None,
ctxlens: List[int] = None,
**kwargs,
) -> List[Tuple[float, bool]]:
res = []
if not isinstance(outputs, list):
outputs = [outputs]
for out in outputs:
for choice, ctxlen in zip(
sorted(out["choices"], key=itemgetter("index")), ctxlens
):
assert ctxlen > 0, "Context length must be greater than 0"
logprobs = sum(choice["logprobs"]["token_logprobs"][ctxlen:-1])
tokens_logprobs = choice["logprobs"]["token_logprobs"][ctxlen:-1]
top_logprobs = choice["logprobs"]["top_logprobs"][ctxlen:-1]
is_greedy = True
for tok, top in zip(tokens_logprobs, top_logprobs):
if tok != max(top.values()):
is_greedy = False
break
res.append((logprobs, is_greedy))
return res
@staticmethod
def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
res = []
if not isinstance(outputs, list):
outputs = [outputs]
for out in outputs:
tmp = [None] * len(out["choices"])
for choices in out["choices"]:
tmp[choices["index"]] = choices["text"]
res = res + tmp
return res
@property
def api_key(self):
return os.environ.get("OPENAI_API_KEY", "")
@register_model("local-chat-completions")
class LocalChatCompletion(LocalCompletionsAPI):
def __init__(
self,
base_url=None,
tokenizer_backend=None,
tokenized_requests=False,
**kwargs,
):
eval_logger.warning(
"chat-completions endpoint requires the `--apply_chat_template` flag."
)
super().__init__(
base_url=base_url,
tokenizer_backend=tokenizer_backend,
tokenized_requests=tokenized_requests,
**kwargs,
)
if self._batch_size > 1:
eval_logger.warning(
"Chat completions does not support batching. Defaulting to batch size 1."
)
self._batch_size = 1
def _create_payload(
self,
messages: List[Dict],
generate=False,
gen_kwargs: dict = None,
seed=1234,
eos=None,
**kwargs,
) -> dict:
assert type(messages) is not str, (
"chat-completions require the --apply_chat_template flag."
)
gen_kwargs.pop("do_sample", False)
if "max_tokens" in gen_kwargs:
max_tokens = gen_kwargs.pop("max_tokens")
else:
max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
temperature = gen_kwargs.pop("temperature", 0)
stop = handle_stop_sequences(gen_kwargs.pop("until", None), eos)
if not isinstance(stop, (list, tuple)):
stop = [stop]
return {
"messages": messages,
"model": self.model,
"max_tokens": max_tokens,
"temperature": temperature,
"stop": stop[:4],
"seed": seed,
**gen_kwargs,
}
@staticmethod
def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
res = []
if not isinstance(outputs, list):
outputs = [outputs]
for out in outputs:
tmp = [None] * len(out["choices"])
for choices in out["choices"]:
tmp[choices["index"]] = choices["message"]["content"]
res = res + tmp
return res
def tok_encode(
self,
string: Union[str, Any],
left_truncate_len=None,
add_special_tokens=None,
**kwargs,
) -> Union[List[str], List[int], Any]:
return string
def loglikelihood(self, requests, **kwargs):
raise NotImplementedError(
"Loglikelihood is not supported for chat completions. Consider using the completions API instead."
)
@register_model(
"openai-completions",
)
class OpenAICompletionsAPI(LocalCompletionsAPI):
def __init__(
self,
base_url="https://api.openai.com/v1/completions",
tokenizer_backend="tiktoken",
**kwargs,
):
super().__init__(
base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
)
@cached_property
def api_key(self):
"""Override this property to return the API key for the API request."""
key = os.environ.get("OPENAI_API_KEY", None)
if key is None:
raise ValueError(
"API key not found. Please set the `OPENAI_API_KEY` environment variable."
)
return key
def loglikelihood(self, requests, **kwargs):
assert self.model in [
"babbage-002",
"davinci-002",
], (
f"Prompt loglikelihoods are only supported by OpenAI's API for {['babbage-002', 'davinci-002']}."
)
return super().loglikelihood(requests, **kwargs)
def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
return ""
@register_model("openai-chat-completions")
class OpenAIChatCompletion(LocalChatCompletion):
def __init__(
self,
base_url="https://api.openai.com/v1/chat/completions",
tokenizer_backend=None,
tokenized_requests=False,
**kwargs,
):
if "o1" in kwargs.get("model", ""):
eval_logger.warning(
"o1 models do not support `stop` and only support temperature=1"
)
super().__init__(
base_url=base_url,
tokenizer_backend=tokenizer_backend,
tokenized_requests=tokenized_requests,
**kwargs,
)
@cached_property
def api_key(self):
"""Override this property to return the API key for the API request."""
key = os.environ.get("OPENAI_API_KEY", None)
if key is None:
raise ValueError(
"API key not found. Please set the `OPENAI_API_KEY` environment variable."
)
return key
def loglikelihood(self, requests, **kwargs):
raise NotImplementedError(
"Loglikelihood (and therefore `multiple_choice`-type tasks) is not supported for chat completions as OpenAI does not provide prompt logprobs. See https://github.com/EleutherAI/lm-evaluation-harness/issues/942#issuecomment-1777836312 or https://github.com/EleutherAI/lm-evaluation-harness/issues/1196 for more background on this limitation."
)
def _create_payload(
self,
messages: List[Dict],
generate=False,
gen_kwargs: dict = None,
seed=1234,
eos="<|endoftext|>",
**kwargs,
) -> dict:
assert type(messages) is not str, (
"chat-completions require the --apply_chat_template flag."
)
gen_kwargs.pop("do_sample", False)
if "max_tokens" in gen_kwargs:
max_tokens = gen_kwargs.pop("max_tokens")
else:
max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
temperature = gen_kwargs.pop("temperature", 0)
stop = handle_stop_sequences(gen_kwargs.pop("until", ["<|endoftext|>"]), eos)
if not isinstance(stop, (list, tuple)):
stop = [stop]
output = {
"messages": messages,
"model": self.model,
"max_completion_tokens": max_tokens,
"temperature": temperature,
"stop": stop[:4],
"seed": seed,
**gen_kwargs,
}
if "o1" in self.model:
output.pop("stop")
output["temperature"] = 1
return output