# TemplateAPI Usage Guide The `TemplateAPI` class is a versatile superclass designed to facilitate the integration of various API-based language models into the lm-evaluation-harness framework. This guide will explain how to use and extend the `TemplateAPI` class to implement your own API models. If your API implements the OpenAI API you can use the `local-completions` or the `local-chat-completions` (defined [here](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/openai_completions.py)) model types, which can also serve as examples of how to effectively subclass this template. ## Overview The `TemplateAPI` class provides a template for creating API-based model implementations. It handles common functionalities such as: - Tokenization (optional) - Batch processing - Caching - Retrying failed requests - Parsing API responses To use this class, you typically need to subclass it and implement specific methods for your API. ## Key Methods to Implement When subclassing `TemplateAPI`, you need to implement the following methods: 1. `_create_payload`: Creates the JSON payload for API requests. 2. `parse_logprobs`: Parses log probabilities from API responses. 3. `parse_generations`: Parses generated text from API responses. 4. `headers`: Returns the headers for the API request. You may also need to override other methods or properties depending on your API's specific requirements. > [!NOTE] > Currently loglikelihood and MCQ based tasks (such as MMLU) are only supported for completion endpoints. Not for chat-completion — those that expect a list of dicts — endpoints! Completion APIs which support instruct tuned models can be evaluated with the `--apply_chat_template` option in order to simultaneously evaluate models using a chat template format while still being able to access the model logits needed for loglikelihood-based tasks. # TemplateAPI Usage Guide ## TemplateAPI Arguments When initializing a `TemplateAPI` instance or a subclass, you can provide several arguments to customize its behavior. Here's a detailed explanation of some important arguments: - `model` or `pretrained` (str): - The name or identifier of the model to use. - `model` takes precedence over `pretrained` when both are provided. - `base_url` (str): - The base URL for the API endpoint. - `tokenizer` (str, optional): - The name or path of the tokenizer to use. - If not provided, it defaults to using the same tokenizer name as the model. - `num_concurrent` (int): - Number of concurrent requests to make to the API. - Useful for APIs that support parallel processing. - Default is 1 (sequential processing). - `timeout` (int, optional): - Timeout for API requests in seconds. - Default is 30. - `tokenized_requests` (bool): - Determines whether the input is pre-tokenized. Defaults to `True`. - Requests can be sent in either tokenized form (`list[list[int]]`) or as text (`list[str]`, or `str` for batch_size=1). - For loglikelihood-based tasks, prompts require tokenization to calculate the context length. If `False` prompts are decoded back to text before being sent to the API. - Not as important for `generate_until` tasks. - Ignored for chat formatted inputs (list[dict...]) or if tokenizer_backend is None. - `tokenizer_backend` (str, optional): - Required for loglikelihood-based or MCQ tasks. - Specifies the tokenizer library to use. Options are "tiktoken", "huggingface", or None. - Default is "huggingface". - `max_length` (int, optional): - Maximum length of input + output. - Default is 2048. - `max_retries` (int, optional): - Maximum number of retries for failed API requests. - Default is 3. - `max_gen_toks` (int, optional): - Maximum number of tokens to generate in completion tasks. - Default is 256 or set in task yaml. - `batch_size` (int or str, optional): - Number of requests to batch together (if the API supports batching). - Can be an integer or "auto" (which defaults to 1 for API models). - Default is 1. - `seed` (int, optional): - Random seed for reproducibility. - Default is 1234. - `add_bos_token` (bool, optional): - Whether to add the beginning-of-sequence token to inputs (when tokenizing). - Default is False. - `custom_prefix_token_id` (int, optional): - Custom token ID to use as a prefix for inputs. - If not provided, uses the model's default BOS or EOS token (if `add_bos_token` is True). - `verify_certificate` (bool, optional): - Whether to validate the certificate of the API endpoint (if HTTPS). - Default is True. Example usage: ```python class MyAPIModel(TemplateAPI): def __init__(self, **kwargs): super().__init__( model="my-model", base_url="https://api.mymodel.com/v1/completions", tokenizer_backend="huggingface", num_concurrent=5, max_retries=5, batch_size=10, **kwargs ) # Implement other required methods... ``` When subclassing `TemplateAPI`, you can override these arguments in your `__init__` method to set default values specific to your API. You can also add additional (potentially user-specified) arguments as needed for your specific implementation. ## Example Implementation: OpenAI API The `OpenAICompletionsAPI` and `OpenAIChatCompletion` ([here](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/openai_completions.py) classes demonstrate how to implement API models using the `TemplateAPI` class. Here's a breakdown of the key components: ### 1. Subclassing and Initialization ```python @register_model("openai-completions") class OpenAICompletionsAPI(LocalCompletionsAPI): def __init__( self, base_url="https://api.openai.com/v1/completions", tokenizer_backend="tiktoken", **kwargs, ): super().__init__( base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs ) ``` ### 2. Implementing API Key Retrieval ```python @cached_property def api_key(self): key = os.environ.get("OPENAI_API_KEY", None) if key is None: raise ValueError( "API key not found. Please set the OPENAI_API_KEY environment variable." ) return key ``` ### 3. Creating the Payload ```python def _create_payload( self, messages: Union[List[List[int]], List[dict], List[str], str], generate=False, gen_kwargs: Optional[dict] = None, **kwargs, ) -> dict: if generate: # ... (implementation for generation) else: # ... (implementation for log likelihood) ``` ### 4. Parsing API Responses ```python @staticmethod def parse_logprobs( outputs: Union[Dict, List[Dict]], tokens: List[List[int]] = None, ctxlens: List[int] = None, **kwargs, ) -> List[Tuple[float, bool]]: # ... (implementation) @staticmethod def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]: # ... (implementation) ``` The requests are initiated in the `model_call` or the `amodel_call` methods. ## Implementing Your Own API Model To implement your own API model: 1. Subclass `TemplateAPI` or one of its subclasses (e.g., `LocalCompletionsAPI`). 2. Override the `__init__` method if you need to set specific parameters. 3. Implement the `_create_payload` and `header` methods to create the appropriate payload for your API. 4. Implement the `parse_logprobs` and `parse_generations` methods to parse your API's responses. 5. Override the `api_key` property if your API requires authentication. 6. Override any other methods as necessary to match your API's behavior. ## Best Practices 1. Use the `@register_model` decorator to register your model with the framework (and import it in `lm_eval/models/__init__.py`!). 3. Use environment variables for sensitive information like API keys. 4. Properly handle batching and concurrent requests if supported by your API.