import numpy as np def cb_multi_fi(items): from sklearn.metrics import f1_score preds, golds = zip(*items) preds = np.array(preds) golds = np.array(golds) f11 = f1_score(y_true=golds == 0, y_pred=preds == 0) f12 = f1_score(y_true=golds == 1, y_pred=preds == 1) f13 = f1_score(y_true=golds == 2, y_pred=preds == 2) avg_f1 = np.mean([f11, f12, f13]) return avg_f1