--- license: cc-by-sa-4.0 language: - tig base_model: - meta-llama/Llama-3.2-1B --- ```python import torch, logging from transformers import AutoModelForCausalLM, AutoTokenizer tig_model_path = "BeitTigreAI/tigre-llm-Llama3.2-1B" # Set the device for computation device = "cuda" if torch.cuda.is_available() else "cpu" # Load the tokenizer and model from the specified path tokenizer = AutoTokenizer.from_pretrained(tig_model_path) model = AutoModelForCausalLM.from_pretrained(tig_model_path, device_map="auto") model = model.to(device) # Suppress some of the logging for a cleaner output logging.getLogger("transformers").setLevel(logging.ERROR) # Example 1: Generate text in Tigre (written in Ethiopic script) prompt = "[tig_Ethi]መርሐበ ብኩም" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=50) print("Tigre Output:") print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:])) # Example 2: Generate text in Arabic prompt = "ما الذي يميز لغة التغري؟" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=40) print("\nArabic Output:") print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:])) # Example 3: Generate text in English prompt = "[eng_Latn] What is interesting about the Tigre language?" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=40) print("\nEnglish Output:") print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))