| Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none). | |
| 06/10/2024 22:36:58 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: False | |
| 06/10/2024 22:36:58 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments( | |
| _n_gpu=1, | |
| adafactor=False, | |
| adam_beta1=0.9, | |
| adam_beta2=0.999, | |
| adam_epsilon=1e-08, | |
| auto_find_batch_size=False, | |
| bf16=False, | |
| bf16_full_eval=False, | |
| data_seed=None, | |
| dataloader_drop_last=False, | |
| dataloader_num_workers=0, | |
| dataloader_persistent_workers=False, | |
| dataloader_pin_memory=True, | |
| ddp_backend=None, | |
| ddp_broadcast_buffers=None, | |
| ddp_bucket_cap_mb=None, | |
| ddp_find_unused_parameters=None, | |
| ddp_timeout=1800, | |
| debug=[], | |
| deepspeed=None, | |
| disable_tqdm=False, | |
| dispatch_batches=None, | |
| do_eval=False, | |
| do_predict=True, | |
| do_train=False, | |
| eval_accumulation_steps=None, | |
| eval_delay=0, | |
| eval_steps=None, | |
| evaluation_strategy=no, | |
| fp16=False, | |
| fp16_backend=auto, | |
| fp16_full_eval=False, | |
| fp16_opt_level=O1, | |
| fsdp=[], | |
| fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}, | |
| fsdp_min_num_params=0, | |
| fsdp_transformer_layer_cls_to_wrap=None, | |
| full_determinism=False, | |
| generation_config=None, | |
| generation_max_length=None, | |
| generation_num_beams=2, | |
| gradient_accumulation_steps=1, | |
| gradient_checkpointing=False, | |
| gradient_checkpointing_kwargs=None, | |
| greater_is_better=None, | |
| group_by_length=False, | |
| half_precision_backend=auto, | |
| hub_always_push=False, | |
| hub_model_id=None, | |
| hub_private_repo=False, | |
| hub_strategy=every_save, | |
| hub_token=<HUB_TOKEN>, | |
| ignore_data_skip=False, | |
| include_inputs_for_metrics=False, | |
| include_num_input_tokens_seen=False, | |
| include_tokens_per_second=False, | |
| jit_mode_eval=False, | |
| label_names=None, | |
| label_smoothing_factor=0.0, | |
| learning_rate=5e-05, | |
| length_column_name=input_length, | |
| load_best_model_at_end=False, | |
| local_rank=0, | |
| log_level=passive, | |
| log_level_replica=warning, | |
| log_on_each_node=True, | |
| logging_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU/runs/Jun10_22-36-57_tholus-7.int.europe.naverlabs.com, | |
| logging_first_step=False, | |
| logging_nan_inf_filter=True, | |
| logging_steps=500, | |
| logging_strategy=steps, | |
| lr_scheduler_kwargs={}, | |
| lr_scheduler_type=linear, | |
| max_grad_norm=1.0, | |
| max_steps=-1, | |
| metric_for_best_model=None, | |
| mp_parameters=, | |
| neftune_noise_alpha=None, | |
| no_cuda=False, | |
| num_train_epochs=3.0, | |
| optim=adamw_torch, | |
| optim_args=None, | |
| output_dir=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU, | |
| overwrite_output_dir=False, | |
| past_index=-1, | |
| per_device_eval_batch_size=32, | |
| per_device_train_batch_size=8, | |
| predict_with_generate=True, | |
| prediction_loss_only=False, | |
| push_to_hub=False, | |
| push_to_hub_model_id=None, | |
| push_to_hub_organization=None, | |
| push_to_hub_token=<PUSH_TO_HUB_TOKEN>, | |
| ray_scope=last, | |
| remove_unused_columns=True, | |
| report_to=['tensorboard'], | |
| resume_from_checkpoint=None, | |
| run_name=/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/eval/NLU, | |
| save_on_each_node=False, | |
| save_only_model=False, | |
| save_safetensors=True, | |
| save_steps=500, | |
| save_strategy=steps, | |
| save_total_limit=None, | |
| seed=42, | |
| skip_memory_metrics=True, | |
| sortish_sampler=False, | |
| split_batches=False, | |
| tf32=None, | |
| torch_compile=False, | |
| torch_compile_backend=None, | |
| torch_compile_mode=None, | |
| torchdynamo=None, | |
| tpu_metrics_debug=False, | |
| tpu_num_cores=None, | |
| use_cpu=False, | |
| use_ipex=False, | |
| use_legacy_prediction_loop=False, | |
| use_mps_device=False, | |
| warmup_ratio=0.0, | |
| warmup_steps=0, | |
| weight_decay=0.0, | |
| ) | |
| Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/massive_slu/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617 | |
| 06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset Infos from /beegfs/scratch/user/blee/hugging-face/models/modules/datasets_modules/datasets/massive_slu/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617 | |
| Overwrite dataset info from restored data version if exists. | |
| 06/10/2024 22:36:58 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists. | |
| Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617 | |
| 06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617 | |
| Found cached dataset massive_slu (/beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617) | |
| 06/10/2024 22:36:58 - INFO - datasets.builder - Found cached dataset massive_slu (/beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617) | |
| Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617 | |
| 06/10/2024 22:36:58 - INFO - datasets.info - Loading Dataset info from /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617 | |
| [INFO|configuration_utils.py:737] 2024-06-10 22:36:58,618 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/config.json | |
| [INFO|configuration_utils.py:802] 2024-06-10 22:36:58,633 >> Model config MT5Config { | |
| "_name_or_path": "/beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407", | |
| "architectures": [ | |
| "MT5ForConditionalGeneration" | |
| ], | |
| "classifier_dropout": 0.0, | |
| "d_ff": 2048, | |
| "d_kv": 64, | |
| "d_model": 768, | |
| "decoder_start_token_id": 0, | |
| "dense_act_fn": "gelu_new", | |
| "dropout": 0.2, | |
| "dropout_rate": 0.1, | |
| "eos_token_id": 1, | |
| "feed_forward_proj": "gated-gelu", | |
| "initializer_factor": 1.0, | |
| "is_encoder_decoder": true, | |
| "is_gated_act": true, | |
| "layer_norm_epsilon": 1e-06, | |
| "model_type": "mt5", | |
| "num_decoder_layers": 12, | |
| "num_heads": 12, | |
| "num_layers": 12, | |
| "output_past": true, | |
| "pad_token_id": 0, | |
| "relative_attention_max_distance": 128, | |
| "relative_attention_num_buckets": 32, | |
| "tie_word_embeddings": false, | |
| "tokenizer_class": "T5Tokenizer", | |
| "torch_dtype": "float32", | |
| "transformers_version": "4.37.0.dev0", | |
| "use_cache": true, | |
| "vocab_size": 250112 | |
| } | |
| [INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,656 >> loading file spiece.model | |
| [INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,658 >> loading file tokenizer.json | |
| [INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,660 >> loading file added_tokens.json | |
| [INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,662 >> loading file special_tokens_map.json | |
| [INFO|tokenization_utils_base.py:2024] 2024-06-10 22:36:58,665 >> loading file tokenizer_config.json | |
| [INFO|modeling_utils.py:3373] 2024-06-10 22:36:59,181 >> loading weights file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/model.safetensors | |
| [INFO|configuration_utils.py:826] 2024-06-10 22:36:59,353 >> Generate config GenerationConfig { | |
| "decoder_start_token_id": 0, | |
| "eos_token_id": 1, | |
| "pad_token_id": 0 | |
| } | |
| [INFO|modeling_utils.py:4224] 2024-06-10 22:37:04,608 >> All model checkpoint weights were used when initializing MT5ForConditionalGeneration. | |
| [INFO|modeling_utils.py:4232] 2024-06-10 22:37:04,610 >> All the weights of MT5ForConditionalGeneration were initialized from the model checkpoint at /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407. | |
| If your task is similar to the task the model of the checkpoint was trained on, you can already use MT5ForConditionalGeneration for predictions without further training. | |
| [INFO|configuration_utils.py:779] 2024-06-10 22:37:04,625 >> loading configuration file /beegfs/scratch/user/blee/project_3/models/NLU.mt5-base.task_type-1.fine_tune.gpu_a100-40g+.node-1x1.bsz-64.epochs-22.metric-ema.metric_lang-all/checkpoint-30407/generation_config.json | |
| [INFO|configuration_utils.py:826] 2024-06-10 22:37:04,627 >> Generate config GenerationConfig { | |
| "decoder_start_token_id": 0, | |
| "eos_token_id": 1, | |
| "pad_token_id": 0 | |
| } | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-525dddbb93e613dc.arrow | |
| 06/10/2024 22:37:04 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-525dddbb93e613dc.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 10152.18 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 9881.17 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-0ff2f782f6ce550d.arrow | |
| 06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-0ff2f782f6ce550d.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23379.87 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 22426.85 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-db517c5fbde3f93f.arrow | |
| 06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-db517c5fbde3f93f.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 24733.67 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23464.22 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b1a23ce3c266ed7e.arrow | |
| 06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b1a23ce3c266ed7e.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 11672.89 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 11022.17 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-d14f4edcd32d40f9.arrow | |
| 06/10/2024 22:37:05 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-d14f4edcd32d40f9.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 12128.52 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 11483.51 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c32b0d4edcd745d1.arrow | |
| 06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c32b0d4edcd745d1.arrow | |
| Running tokenizer on prediction dataset: 34%|ββββ | 1000/2974 [00:00<00:00, 7372.97 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 13353.47 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-65b7a58a8f4b62ba.arrow | |
| 06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-65b7a58a8f4b62ba.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23271.39 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 21331.30 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-8571e8bc453b7162.arrow | |
| 06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-8571e8bc453b7162.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23459.63 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 18122.89 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c74febb30a64318a.arrow | |
| 06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-c74febb30a64318a.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 11319.17 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 10715.31 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-4c2b08ae5bc14226.arrow | |
| 06/10/2024 22:37:06 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-4c2b08ae5bc14226.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 24163.00 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 20604.87 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-5a36e19b80c96113.arrow | |
| 06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-5a36e19b80c96113.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 20147.34 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 12138.36 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b7c60de80d7c7840.arrow | |
| 06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-b7c60de80d7c7840.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 25152.92 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 22962.73 examples/s] | |
| Running tokenizer on prediction dataset: 0%| | 0/2974 [00:00<?, ? examples/s]Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-ae561d58d8bc6128.arrow | |
| 06/10/2024 22:37:07 - INFO - datasets.arrow_dataset - Caching processed dataset at /beegfs/scratch/user/blee/hugging-face/models/datasets/massive_slu/multilingual-test/1.0.0/f9c095e36aa8a498aff90ba642b0b428b56191e41f2c80e78e378689cdb36617/cache-ae561d58d8bc6128.arrow | |
| Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 26368.84 examples/s] Running tokenizer on prediction dataset: 100%|ββββββββββ| 2974/2974 [00:00<00:00, 23629.43 examples/s] | |
| 06/10/2024 22:37:09 - WARNING - accelerate.utils.other - Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. | |
| 06/10/2024 22:37:10 - INFO - __main__ - *** Predict *** | |
| 06/10/2024 22:37:10 - INFO - __main__ - *** test_en_US *** | |
| [INFO|trainer.py:718] 2024-06-10 22:37:10,687 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:37:10,695 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:37:10,696 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:37:10,697 >> Batch size = 32 | |
| [WARNING|logging.py:314] 2024-06-10 22:37:10,704 >> You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:20, 4.34it/s] 3%|β | 3/93 [00:00<00:25, 3.51it/s] 4%|β | 4/93 [00:01<00:27, 3.20it/s] 5%|β | 5/93 [00:01<00:32, 2.72it/s] 6%|β | 6/93 [00:02<00:32, 2.71it/s] 8%|β | 7/93 [00:02<00:31, 2.69it/s] 9%|β | 8/93 [00:02<00:32, 2.61it/s] 10%|β | 9/93 [00:03<00:33, 2.52it/s] 11%|β | 10/93 [00:03<00:33, 2.51it/s] 12%|ββ | 11/93 [00:04<00:33, 2.44it/s] 13%|ββ | 12/93 [00:04<00:32, 2.46it/s] 14%|ββ | 13/93 [00:04<00:33, 2.41it/s] 15%|ββ | 14/93 [00:05<00:37, 2.12it/s] 16%|ββ | 15/93 [00:05<00:36, 2.11it/s] 17%|ββ | 16/93 [00:06<00:34, 2.25it/s] 18%|ββ | 17/93 [00:06<00:34, 2.18it/s] 19%|ββ | 18/93 [00:07<00:33, 2.26it/s] 20%|ββ | 19/93 [00:07<00:33, 2.19it/s] 22%|βββ | 20/93 [00:08<00:32, 2.23it/s] 23%|βββ | 21/93 [00:08<00:32, 2.21it/s] 24%|βββ | 22/93 [00:09<00:33, 2.14it/s] 25%|βββ | 23/93 [00:09<00:33, 2.10it/s] 26%|βββ | 24/93 [00:10<00:31, 2.17it/s] 27%|βββ | 25/93 [00:10<00:30, 2.19it/s] 28%|βββ | 26/93 [00:10<00:30, 2.19it/s] 29%|βββ | 27/93 [00:11<00:28, 2.30it/s] 30%|βββ | 28/93 [00:11<00:26, 2.41it/s] 31%|βββ | 29/93 [00:12<00:26, 2.44it/s] 32%|ββββ | 30/93 [00:12<00:25, 2.43it/s] 33%|ββββ | 31/93 [00:13<00:27, 2.25it/s] 34%|ββββ | 32/93 [00:13<00:26, 2.33it/s] 35%|ββββ | 33/93 [00:13<00:26, 2.26it/s] 37%|ββββ | 34/93 [00:14<00:27, 2.15it/s] 38%|ββββ | 35/93 [00:14<00:25, 2.26it/s] 39%|ββββ | 36/93 [00:15<00:23, 2.45it/s] 40%|ββββ | 37/93 [00:15<00:22, 2.52it/s] 41%|ββββ | 38/93 [00:16<00:23, 2.32it/s] 42%|βββββ | 39/93 [00:16<00:22, 2.37it/s] 43%|βββββ | 40/93 [00:16<00:22, 2.39it/s] 44%|βββββ | 41/93 [00:17<00:22, 2.32it/s] 45%|βββββ | 42/93 [00:17<00:22, 2.25it/s] 46%|βββββ | 43/93 [00:18<00:23, 2.10it/s] 47%|βββββ | 44/93 [00:18<00:23, 2.10it/s] 48%|βββββ | 45/93 [00:19<00:21, 2.22it/s] 49%|βββββ | 46/93 [00:19<00:20, 2.27it/s] 51%|βββββ | 47/93 [00:20<00:20, 2.20it/s] 52%|ββββββ | 48/93 [00:20<00:19, 2.28it/s] 53%|ββββββ | 49/93 [00:20<00:18, 2.41it/s] 54%|ββββββ | 50/93 [00:21<00:20, 2.13it/s] 55%|ββββββ | 51/93 [00:22<00:20, 2.02it/s] 56%|ββββββ | 52/93 [00:22<00:21, 1.95it/s] 57%|ββββββ | 53/93 [00:23<00:19, 2.00it/s] 58%|ββββββ | 54/93 [00:23<00:20, 1.95it/s] 59%|ββββββ | 55/93 [00:23<00:18, 2.10it/s] 60%|ββββββ | 56/93 [00:24<00:15, 2.33it/s] 61%|βββββββ | 57/93 [00:24<00:16, 2.22it/s] 62%|βββββββ | 58/93 [00:25<00:14, 2.35it/s] 63%|βββββββ | 59/93 [00:25<00:14, 2.28it/s] 65%|βββββββ | 60/93 [00:26<00:15, 2.17it/s] 66%|βββββββ | 61/93 [00:26<00:13, 2.34it/s] 67%|βββββββ | 62/93 [00:27<00:14, 2.19it/s] 68%|βββββββ | 63/93 [00:27<00:13, 2.27it/s] 69%|βββββββ | 64/93 [00:29<00:26, 1.10it/s] 70%|βββββββ | 65/93 [00:29<00:21, 1.33it/s] 71%|βββββββ | 66/93 [00:30<00:17, 1.55it/s] 72%|ββββββββ | 67/93 [00:30<00:15, 1.73it/s] 73%|ββββββββ | 68/93 [00:31<00:15, 1.66it/s] 74%|ββββββββ | 69/93 [00:31<00:13, 1.80it/s] 75%|ββββββββ | 70/93 [00:32<00:11, 1.93it/s] 76%|ββββββββ | 71/93 [00:32<00:10, 2.04it/s] 77%|ββββββββ | 72/93 [00:33<00:10, 2.03it/s] 78%|ββββββββ | 73/93 [00:33<00:09, 2.15it/s] 80%|ββββββββ | 74/93 [00:33<00:08, 2.11it/s] 81%|ββββββββ | 75/93 [00:34<00:07, 2.31it/s] 82%|βββββββββ | 76/93 [00:34<00:07, 2.16it/s] 83%|βββββββββ | 77/93 [00:35<00:07, 2.19it/s] 84%|βββββββββ | 78/93 [00:35<00:07, 2.11it/s] 85%|βββββββββ | 79/93 [00:36<00:07, 1.91it/s] 86%|βββββββββ | 80/93 [00:37<00:07, 1.80it/s] 87%|βββββββββ | 81/93 [00:37<00:06, 1.97it/s] 88%|βββββββββ | 82/93 [00:37<00:05, 2.16it/s] 89%|βββββββββ | 83/93 [00:38<00:04, 2.20it/s] 90%|βββββββββ | 84/93 [00:38<00:04, 2.06it/s] 91%|ββββββββββ| 85/93 [00:39<00:03, 2.03it/s] 92%|ββββββββββ| 86/93 [00:39<00:03, 2.16it/s] 94%|ββββββββββ| 87/93 [00:40<00:02, 2.17it/s] 95%|ββββββββββ| 88/93 [00:40<00:02, 2.13it/s] 96%|ββββββββββ| 89/93 [00:41<00:01, 2.16it/s] 97%|ββββββββββ| 90/93 [00:41<00:01, 2.20it/s] 98%|ββββββββββ| 91/93 [00:42<00:00, 2.08it/s] 99%|ββββββββββ| 92/93 [00:42<00:00, 2.17it/s] 100%|ββββββββββ| 93/93 [00:42<00:00, 2.18it/s] 100%|ββββββββββ| 93/93 [00:43<00:00, 2.14it/s] | |
| ***** predict_test_en_US metrics ***** | |
| predict_ex_match_acc = 0.7317 | |
| predict_ex_match_acc_stderr = 0.0081 | |
| predict_intent_acc = 0.8894 | |
| predict_intent_acc_stderr = 0.0058 | |
| predict_loss = 0.1316 | |
| predict_runtime = 0:00:44.50 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 66.819 | |
| predict_slot_micro_f1 = 0.8224 | |
| predict_slot_micro_f1_stderr = 0.0027 | |
| predict_steps_per_second = 2.089 | |
| 06/10/2024 22:37:55 - INFO - __main__ - *** test_es_ES *** | |
| [INFO|trainer.py:718] 2024-06-10 22:37:55,406 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:37:55,409 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:37:55,409 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:37:55,410 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:22, 3.96it/s] 3%|β | 3/93 [00:00<00:27, 3.25it/s] 4%|β | 4/93 [00:01<00:29, 3.01it/s] 5%|β | 5/93 [00:01<00:35, 2.46it/s] 6%|β | 6/93 [00:02<00:36, 2.41it/s] 8%|β | 7/93 [00:02<00:35, 2.44it/s] 9%|β | 8/93 [00:03<00:35, 2.43it/s] 10%|β | 9/93 [00:03<00:37, 2.24it/s] 11%|β | 10/93 [00:04<00:36, 2.27it/s] 12%|ββ | 11/93 [00:04<00:35, 2.32it/s] 13%|ββ | 12/93 [00:04<00:34, 2.33it/s] 14%|ββ | 13/93 [00:05<00:35, 2.27it/s] 15%|ββ | 14/93 [00:06<00:40, 1.93it/s] 16%|ββ | 15/93 [00:06<00:39, 1.96it/s] 17%|ββ | 16/93 [00:07<00:39, 1.97it/s] 18%|ββ | 17/93 [00:07<00:40, 1.90it/s] 19%|ββ | 18/93 [00:08<00:37, 1.98it/s] 20%|ββ | 19/93 [00:08<00:38, 1.94it/s] 22%|βββ | 20/93 [00:09<00:36, 2.02it/s] 23%|βββ | 21/93 [00:09<00:37, 1.93it/s] 24%|βββ | 22/93 [00:10<00:36, 1.93it/s] 25%|βββ | 23/93 [00:10<00:35, 1.99it/s] 26%|βββ | 24/93 [00:10<00:32, 2.12it/s] 27%|βββ | 25/93 [00:12<01:01, 1.11it/s] 28%|βββ | 26/93 [00:13<00:51, 1.30it/s] 29%|βββ | 27/93 [00:13<00:42, 1.55it/s] 30%|βββ | 28/93 [00:14<00:37, 1.73it/s] 31%|βββ | 29/93 [00:14<00:33, 1.89it/s] 32%|ββββ | 30/93 [00:14<00:31, 1.98it/s] 33%|ββββ | 31/93 [00:15<00:33, 1.86it/s] 34%|ββββ | 32/93 [00:16<00:30, 2.01it/s] 35%|ββββ | 33/93 [00:16<00:30, 1.98it/s] 37%|ββββ | 34/93 [00:17<00:30, 1.93it/s] 38%|ββββ | 35/93 [00:17<00:28, 2.04it/s] 39%|ββββ | 36/93 [00:17<00:25, 2.24it/s] 40%|ββββ | 37/93 [00:18<00:22, 2.47it/s] 41%|ββββ | 38/93 [00:18<00:24, 2.23it/s] 42%|βββββ | 39/93 [00:19<00:23, 2.28it/s] 43%|βββββ | 40/93 [00:19<00:24, 2.14it/s] 44%|βββββ | 41/93 [00:20<00:26, 1.97it/s] 45%|βββββ | 42/93 [00:20<00:27, 1.83it/s] 46%|βββββ | 43/93 [00:21<00:28, 1.78it/s] 47%|βββββ | 44/93 [00:22<00:26, 1.82it/s] 48%|βββββ | 45/93 [00:22<00:24, 1.95it/s] 49%|βββββ | 46/93 [00:22<00:24, 1.94it/s] 51%|βββββ | 47/93 [00:23<00:25, 1.81it/s] 52%|ββββββ | 48/93 [00:24<00:23, 1.92it/s] 53%|ββββββ | 49/93 [00:24<00:21, 2.03it/s] 54%|ββββββ | 50/93 [00:24<00:20, 2.06it/s] 55%|ββββββ | 51/93 [00:25<00:21, 2.00it/s] 56%|ββββββ | 52/93 [00:26<00:22, 1.86it/s] 57%|ββββββ | 53/93 [00:26<00:20, 1.91it/s] 58%|ββββββ | 54/93 [00:27<00:20, 1.92it/s] 59%|ββββββ | 55/93 [00:27<00:19, 1.98it/s] 60%|ββββββ | 56/93 [00:27<00:17, 2.15it/s] 61%|βββββββ | 57/93 [00:28<00:17, 2.03it/s] 62%|βββββββ | 58/93 [00:28<00:16, 2.07it/s] 63%|βββββββ | 59/93 [00:29<00:15, 2.14it/s] 65%|βββββββ | 60/93 [00:29<00:16, 2.01it/s] 66%|βββββββ | 61/93 [00:30<00:15, 2.08it/s] 67%|βββββββ | 62/93 [00:30<00:14, 2.11it/s] 68%|βββββββ | 63/93 [00:31<00:14, 2.10it/s] 69%|βββββββ | 64/93 [00:33<00:27, 1.06it/s] 70%|βββββββ | 65/93 [00:33<00:22, 1.23it/s] 71%|βββββββ | 66/93 [00:34<00:20, 1.34it/s] 72%|ββββββββ | 67/93 [00:34<00:17, 1.52it/s] 73%|ββββββββ | 68/93 [00:35<00:16, 1.49it/s] 74%|ββββββββ | 69/93 [00:36<00:14, 1.62it/s] 75%|ββββββββ | 70/93 [00:36<00:13, 1.72it/s] 76%|ββββββββ | 71/93 [00:37<00:12, 1.80it/s] 77%|ββββββββ | 72/93 [00:37<00:11, 1.86it/s] 78%|ββββββββ | 73/93 [00:38<00:10, 1.91it/s] 80%|ββββββββ | 74/93 [00:38<00:09, 1.91it/s] 81%|ββββββββ | 75/93 [00:39<00:08, 2.03it/s] 82%|βββββββββ | 76/93 [00:39<00:08, 2.07it/s] 83%|βββββββββ | 77/93 [00:39<00:07, 2.20it/s] 84%|βββββββββ | 78/93 [00:40<00:06, 2.29it/s] 85%|βββββββββ | 79/93 [00:40<00:07, 1.95it/s] 86%|βββββββββ | 80/93 [00:41<00:07, 1.86it/s] 87%|βββββββββ | 81/93 [00:42<00:06, 1.93it/s] 88%|βββββββββ | 82/93 [00:42<00:05, 2.11it/s] 89%|βββββββββ | 83/93 [00:42<00:04, 2.06it/s] 90%|βββββββββ | 84/93 [00:43<00:04, 1.88it/s] 91%|ββββββββββ| 85/93 [00:44<00:04, 1.99it/s] 92%|ββββββββββ| 86/93 [00:44<00:03, 2.09it/s] 94%|ββββββββββ| 87/93 [00:44<00:02, 2.01it/s] 95%|ββββββββββ| 88/93 [00:45<00:02, 2.00it/s] 96%|ββββββββββ| 89/93 [00:45<00:01, 2.04it/s] 97%|ββββββββββ| 90/93 [00:46<00:01, 2.09it/s] 98%|ββββββββββ| 91/93 [00:46<00:01, 2.00it/s] 99%|ββββββββββ| 92/93 [00:47<00:00, 2.03it/s] 100%|ββββββββββ| 93/93 [00:47<00:00, 2.13it/s] 100%|ββββββββββ| 93/93 [00:48<00:00, 1.94it/s] | |
| ***** predict_test_es_ES metrics ***** | |
| predict_ex_match_acc = 0.6722 | |
| predict_ex_match_acc_stderr = 0.0086 | |
| predict_intent_acc = 0.8692 | |
| predict_intent_acc_stderr = 0.0062 | |
| predict_loss = 0.159 | |
| predict_runtime = 0:00:48.47 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 61.347 | |
| predict_slot_micro_f1 = 0.76 | |
| predict_slot_micro_f1_stderr = 0.0029 | |
| predict_steps_per_second = 1.918 | |
| 06/10/2024 22:38:44 - INFO - __main__ - *** test_de_DE *** | |
| [INFO|trainer.py:718] 2024-06-10 22:38:44,125 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:38:44,127 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:38:44,128 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:38:44,128 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:20, 4.47it/s] 3%|β | 3/93 [00:00<00:24, 3.64it/s] 4%|β | 4/93 [00:01<00:26, 3.31it/s] 5%|β | 5/93 [00:01<00:30, 2.91it/s] 6%|β | 6/93 [00:01<00:31, 2.74it/s] 8%|β | 7/93 [00:02<00:31, 2.69it/s] 9%|β | 8/93 [00:02<00:31, 2.66it/s] 10%|β | 9/93 [00:03<00:33, 2.54it/s] 11%|β | 10/93 [00:03<00:32, 2.53it/s] 12%|ββ | 11/93 [00:03<00:32, 2.55it/s] 13%|ββ | 12/93 [00:04<00:31, 2.56it/s] 14%|ββ | 13/93 [00:04<00:32, 2.49it/s] 15%|ββ | 14/93 [00:05<00:36, 2.14it/s] 16%|ββ | 15/93 [00:05<00:36, 2.16it/s] 17%|ββ | 16/93 [00:06<00:32, 2.34it/s] 18%|ββ | 17/93 [00:06<00:34, 2.22it/s] 19%|ββ | 18/93 [00:07<00:32, 2.29it/s] 20%|ββ | 19/93 [00:07<00:32, 2.29it/s] 22%|βββ | 20/93 [00:07<00:30, 2.38it/s] 23%|βββ | 21/93 [00:08<00:29, 2.46it/s] 24%|βββ | 22/93 [00:08<00:30, 2.29it/s] 25%|βββ | 23/93 [00:09<00:31, 2.26it/s] 26%|βββ | 24/93 [00:09<00:29, 2.35it/s] 27%|βββ | 25/93 [00:10<00:30, 2.25it/s] 28%|βββ | 26/93 [00:10<00:30, 2.22it/s] 29%|βββ | 27/93 [00:10<00:28, 2.33it/s] 30%|βββ | 28/93 [00:11<00:26, 2.47it/s] 31%|βββ | 29/93 [00:11<00:25, 2.51it/s] 32%|ββββ | 30/93 [00:12<00:25, 2.49it/s] 33%|ββββ | 31/93 [00:12<00:25, 2.40it/s] 34%|ββββ | 32/93 [00:12<00:25, 2.39it/s] 35%|ββββ | 33/93 [00:13<00:27, 2.22it/s] 37%|ββββ | 34/93 [00:13<00:25, 2.27it/s] 38%|ββββ | 35/93 [00:14<00:24, 2.32it/s] 39%|ββββ | 36/93 [00:14<00:22, 2.48it/s] 40%|ββββ | 37/93 [00:14<00:21, 2.64it/s] 41%|ββββ | 38/93 [00:15<00:22, 2.49it/s] 42%|βββββ | 39/93 [00:15<00:21, 2.49it/s] 43%|βββββ | 40/93 [00:16<00:21, 2.45it/s] 44%|βββββ | 41/93 [00:16<00:22, 2.33it/s] 45%|βββββ | 42/93 [00:17<00:24, 2.11it/s] 46%|βββββ | 43/93 [00:17<00:24, 2.03it/s] 47%|βββββ | 44/93 [00:18<00:23, 2.13it/s] 48%|βββββ | 45/93 [00:18<00:21, 2.25it/s] 49%|βββββ | 46/93 [00:19<00:20, 2.31it/s] 51%|βββββ | 47/93 [00:19<00:21, 2.19it/s] 52%|ββββββ | 48/93 [00:20<00:19, 2.26it/s] 53%|ββββββ | 49/93 [00:20<00:19, 2.30it/s] 54%|ββββββ | 50/93 [00:20<00:18, 2.31it/s] 55%|ββββββ | 51/93 [00:21<00:17, 2.42it/s] 56%|ββββββ | 52/93 [00:21<00:19, 2.15it/s] 57%|ββββββ | 53/93 [00:22<00:18, 2.14it/s] 58%|ββββββ | 54/93 [00:22<00:18, 2.06it/s] 59%|ββββββ | 55/93 [00:23<00:17, 2.18it/s] 60%|ββββββ | 56/93 [00:23<00:16, 2.30it/s] 61%|βββββββ | 57/93 [00:24<00:16, 2.20it/s] 62%|βββββββ | 58/93 [00:24<00:15, 2.28it/s] 63%|βββββββ | 59/93 [00:24<00:15, 2.22it/s] 65%|βββββββ | 60/93 [00:25<00:15, 2.13it/s] 66%|βββββββ | 61/93 [00:25<00:14, 2.27it/s] 67%|βββββββ | 62/93 [00:26<00:14, 2.14it/s] 68%|βββββββ | 63/93 [00:26<00:13, 2.29it/s] 69%|βββββββ | 64/93 [00:28<00:26, 1.10it/s] 70%|βββββββ | 65/93 [00:29<00:20, 1.35it/s] 71%|βββββββ | 66/93 [00:29<00:17, 1.57it/s] 72%|ββββββββ | 67/93 [00:29<00:14, 1.77it/s] 73%|ββββββββ | 68/93 [00:30<00:13, 1.92it/s] 74%|ββββββββ | 69/93 [00:30<00:12, 1.91it/s] 75%|ββββββββ | 70/93 [00:31<00:11, 2.05it/s] 76%|ββββββββ | 71/93 [00:31<00:10, 2.15it/s] 77%|ββββββββ | 72/93 [00:32<00:10, 2.08it/s] 78%|ββββββββ | 73/93 [00:32<00:08, 2.27it/s] 80%|ββββββββ | 74/93 [00:32<00:08, 2.22it/s] 81%|ββββββββ | 75/93 [00:33<00:08, 2.21it/s] 82%|βββββββββ | 76/93 [00:33<00:07, 2.17it/s] 83%|βββββββββ | 77/93 [00:34<00:07, 2.20it/s] 84%|βββββββββ | 78/93 [00:34<00:06, 2.23it/s] 85%|βββββββββ | 79/93 [00:35<00:07, 1.95it/s] 86%|βββββββββ | 80/93 [00:35<00:06, 1.95it/s] 87%|βββββββββ | 81/93 [00:36<00:05, 2.04it/s] 88%|βββββββββ | 82/93 [00:36<00:04, 2.22it/s] 89%|βββββββββ | 83/93 [00:37<00:04, 2.22it/s] 90%|βββββββββ | 84/93 [00:37<00:04, 2.20it/s] 91%|ββββββββββ| 85/93 [00:38<00:03, 2.24it/s] 92%|ββββββββββ| 86/93 [00:38<00:03, 2.31it/s] 94%|ββββββββββ| 87/93 [00:38<00:02, 2.23it/s] 95%|ββββββββββ| 88/93 [00:39<00:02, 2.24it/s] 96%|ββββββββββ| 89/93 [00:39<00:01, 2.19it/s] 97%|ββββββββββ| 90/93 [00:40<00:01, 2.33it/s] 98%|ββββββββββ| 91/93 [00:40<00:00, 2.16it/s] 99%|ββββββββββ| 92/93 [00:41<00:00, 2.23it/s] 100%|ββββββββββ| 93/93 [00:41<00:00, 2.23it/s] 100%|ββββββββββ| 93/93 [00:41<00:00, 2.22it/s] | |
| ***** predict_test_de_DE metrics ***** | |
| predict_ex_match_acc = 0.696 | |
| predict_ex_match_acc_stderr = 0.0084 | |
| predict_intent_acc = 0.8665 | |
| predict_intent_acc_stderr = 0.0062 | |
| predict_loss = 0.1518 | |
| predict_runtime = 0:00:42.34 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 70.231 | |
| predict_slot_micro_f1 = 0.7999 | |
| predict_slot_micro_f1_stderr = 0.0029 | |
| predict_steps_per_second = 2.196 | |
| 06/10/2024 22:39:26 - INFO - __main__ - *** test_fr_FR *** | |
| [INFO|trainer.py:718] 2024-06-10 22:39:26,669 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:39:26,671 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:39:26,672 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:39:26,672 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:22, 4.11it/s] 3%|β | 3/93 [00:00<00:30, 2.95it/s] 4%|β | 4/93 [00:01<00:33, 2.65it/s] 5%|β | 5/93 [00:01<00:38, 2.30it/s] 6%|β | 6/93 [00:02<00:36, 2.37it/s] 8%|β | 7/93 [00:02<00:38, 2.23it/s] 9%|β | 8/93 [00:03<00:37, 2.27it/s] 10%|β | 9/93 [00:03<00:37, 2.26it/s] 11%|β | 10/93 [00:04<00:38, 2.17it/s] 12%|ββ | 11/93 [00:04<00:37, 2.20it/s] 13%|ββ | 12/93 [00:05<00:36, 2.22it/s] 14%|ββ | 13/93 [00:05<00:36, 2.19it/s] 15%|ββ | 14/93 [00:06<00:41, 1.89it/s] 16%|ββ | 15/93 [00:06<00:40, 1.91it/s] 17%|ββ | 16/93 [00:07<00:37, 2.03it/s] 18%|ββ | 17/93 [00:07<00:39, 1.91it/s] 19%|ββ | 18/93 [00:08<00:37, 1.98it/s] 20%|ββ | 19/93 [00:08<00:37, 1.98it/s] 22%|βββ | 20/93 [00:09<00:36, 2.03it/s] 23%|βββ | 21/93 [00:09<00:35, 2.04it/s] 24%|βββ | 22/93 [00:10<00:35, 1.99it/s] 25%|βββ | 23/93 [00:10<00:33, 2.06it/s] 26%|βββ | 24/93 [00:11<00:33, 2.09it/s] 27%|βββ | 25/93 [00:11<00:35, 1.92it/s] 28%|βββ | 26/93 [00:12<00:36, 1.85it/s] 29%|βββ | 27/93 [00:12<00:32, 2.05it/s] 30%|βββ | 28/93 [00:13<00:30, 2.13it/s] 31%|βββ | 29/93 [00:13<00:30, 2.11it/s] 32%|ββββ | 30/93 [00:14<00:28, 2.21it/s] 33%|ββββ | 31/93 [00:14<00:28, 2.19it/s] 34%|ββββ | 32/93 [00:14<00:28, 2.13it/s] 35%|ββββ | 33/93 [00:15<00:28, 2.08it/s] 37%|ββββ | 34/93 [00:15<00:28, 2.09it/s] 38%|ββββ | 35/93 [00:16<00:26, 2.20it/s] 39%|ββββ | 36/93 [00:16<00:25, 2.25it/s] 40%|ββββ | 37/93 [00:17<00:23, 2.39it/s] 41%|ββββ | 38/93 [00:17<00:26, 2.06it/s] 42%|βββββ | 39/93 [00:18<00:24, 2.17it/s] 43%|βββββ | 40/93 [00:18<00:24, 2.18it/s] 44%|βββββ | 41/93 [00:19<00:24, 2.10it/s] 45%|βββββ | 42/93 [00:19<00:26, 1.89it/s] 46%|βββββ | 43/93 [00:20<00:27, 1.82it/s] 47%|βββββ | 44/93 [00:20<00:26, 1.86it/s] 48%|βββββ | 45/93 [00:21<00:23, 2.00it/s] 49%|βββββ | 46/93 [00:21<00:23, 1.98it/s] 51%|βββββ | 47/93 [00:22<00:23, 1.99it/s] 52%|ββββββ | 48/93 [00:22<00:21, 2.10it/s] 53%|ββββββ | 49/93 [00:23<00:20, 2.14it/s] 54%|ββββββ | 50/93 [00:23<00:20, 2.12it/s] 55%|ββββββ | 51/93 [00:24<00:20, 2.04it/s] 56%|ββββββ | 52/93 [00:24<00:19, 2.08it/s] 57%|ββββββ | 53/93 [00:25<00:19, 2.07it/s] 58%|ββββββ | 54/93 [00:25<00:19, 2.03it/s] 59%|ββββββ | 55/93 [00:26<00:19, 1.95it/s] 60%|ββββββ | 56/93 [00:26<00:17, 2.15it/s] 61%|βββββββ | 57/93 [00:26<00:15, 2.28it/s] 62%|βββββββ | 58/93 [00:27<00:15, 2.27it/s] 63%|βββββββ | 59/93 [00:27<00:15, 2.18it/s] 65%|βββββββ | 60/93 [00:28<00:15, 2.16it/s] 66%|βββββββ | 61/93 [00:28<00:13, 2.31it/s] 67%|βββββββ | 62/93 [00:29<00:14, 2.14it/s] 68%|βββββββ | 63/93 [00:29<00:14, 2.06it/s] 69%|βββββββ | 64/93 [00:31<00:27, 1.04it/s] 70%|βββββββ | 65/93 [00:32<00:23, 1.21it/s] 71%|βββββββ | 66/93 [00:32<00:19, 1.39it/s] 72%|ββββββββ | 67/93 [00:33<00:16, 1.56it/s] 73%|ββββββββ | 68/93 [00:33<00:16, 1.56it/s] 74%|ββββββββ | 69/93 [00:34<00:13, 1.74it/s] 75%|ββββββββ | 70/93 [00:34<00:12, 1.88it/s] 76%|ββββββββ | 71/93 [00:35<00:11, 1.96it/s] 77%|ββββββββ | 72/93 [00:35<00:11, 1.90it/s] 78%|ββββββββ | 73/93 [00:36<00:10, 1.98it/s] 80%|ββββββββ | 74/93 [00:36<00:09, 2.08it/s] 81%|ββββββββ | 75/93 [00:37<00:07, 2.25it/s] 82%|βββββββββ | 76/93 [00:37<00:07, 2.16it/s] 83%|βββββββββ | 77/93 [00:38<00:07, 2.17it/s] 84%|βββββββββ | 78/93 [00:38<00:07, 2.08it/s] 85%|βββββββββ | 79/93 [00:39<00:06, 2.12it/s] 86%|βββββββββ | 80/93 [00:40<00:11, 1.11it/s] 87%|βββββββββ | 81/93 [00:41<00:09, 1.29it/s] 88%|βββββββββ | 82/93 [00:41<00:07, 1.50it/s] 89%|βββββββββ | 83/93 [00:42<00:06, 1.64it/s] 90%|βββββββββ | 84/93 [00:42<00:05, 1.72it/s] 91%|ββββββββββ| 85/93 [00:43<00:04, 1.82it/s] 92%|ββββββββββ| 86/93 [00:43<00:03, 1.95it/s] 94%|ββββββββββ| 87/93 [00:44<00:03, 1.89it/s] 95%|ββββββββββ| 88/93 [00:44<00:02, 1.92it/s] 96%|ββββββββββ| 89/93 [00:45<00:02, 1.98it/s] 97%|ββββββββββ| 90/93 [00:45<00:01, 2.10it/s] 98%|ββββββββββ| 91/93 [00:46<00:00, 2.00it/s] 99%|ββββββββββ| 92/93 [00:46<00:00, 2.07it/s] 100%|ββββββββββ| 93/93 [00:47<00:00, 2.07it/s] 100%|ββββββββββ| 93/93 [00:47<00:00, 1.96it/s] | |
| ***** predict_test_fr_FR metrics ***** | |
| predict_ex_match_acc = 0.6725 | |
| predict_ex_match_acc_stderr = 0.0086 | |
| predict_intent_acc = 0.8716 | |
| predict_intent_acc_stderr = 0.0061 | |
| predict_loss = 0.1494 | |
| predict_runtime = 0:00:47.79 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 62.224 | |
| predict_slot_micro_f1 = 0.76 | |
| predict_slot_micro_f1_stderr = 0.0029 | |
| predict_steps_per_second = 1.946 | |
| 06/10/2024 22:40:14 - INFO - __main__ - *** test_pt_PT *** | |
| [INFO|trainer.py:718] 2024-06-10 22:40:14,689 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:40:14,691 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:40:14,692 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:40:14,692 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:24, 3.77it/s] 3%|β | 3/93 [00:00<00:28, 3.12it/s] 4%|β | 4/93 [00:01<00:29, 3.00it/s] 5%|β | 5/93 [00:01<00:34, 2.52it/s] 6%|β | 6/93 [00:02<00:35, 2.42it/s] 8%|β | 7/93 [00:02<00:39, 2.17it/s] 9%|β | 8/93 [00:03<00:37, 2.25it/s] 10%|β | 9/93 [00:03<00:38, 2.18it/s] 11%|β | 10/93 [00:04<00:38, 2.17it/s] 12%|ββ | 11/93 [00:04<00:38, 2.15it/s] 13%|ββ | 12/93 [00:05<00:36, 2.20it/s] 14%|ββ | 13/93 [00:05<00:36, 2.17it/s] 15%|ββ | 14/93 [00:06<00:40, 1.96it/s] 16%|ββ | 15/93 [00:06<00:38, 2.03it/s] 17%|ββ | 16/93 [00:07<00:36, 2.13it/s] 18%|ββ | 17/93 [00:07<00:37, 2.04it/s] 19%|ββ | 18/93 [00:07<00:34, 2.18it/s] 20%|ββ | 19/93 [00:08<00:34, 2.15it/s] 22%|βββ | 20/93 [00:08<00:32, 2.24it/s] 23%|βββ | 21/93 [00:09<00:31, 2.30it/s] 24%|βββ | 22/93 [00:09<00:32, 2.17it/s] 25%|βββ | 23/93 [00:10<00:32, 2.17it/s] 26%|βββ | 24/93 [00:10<00:30, 2.25it/s] 27%|βββ | 25/93 [00:11<00:31, 2.19it/s] 28%|βββ | 26/93 [00:11<00:30, 2.21it/s] 29%|βββ | 27/93 [00:12<00:29, 2.24it/s] 30%|βββ | 28/93 [00:12<00:28, 2.32it/s] 31%|βββ | 29/93 [00:12<00:27, 2.31it/s] 32%|ββββ | 30/93 [00:13<00:28, 2.24it/s] 33%|ββββ | 31/93 [00:13<00:27, 2.29it/s] 34%|ββββ | 32/93 [00:14<00:27, 2.26it/s] 35%|ββββ | 33/93 [00:14<00:26, 2.23it/s] 37%|ββββ | 34/93 [00:15<00:29, 2.02it/s] 38%|ββββ | 35/93 [00:15<00:27, 2.11it/s] 39%|ββββ | 36/93 [00:15<00:24, 2.33it/s] 40%|ββββ | 37/93 [00:16<00:23, 2.39it/s] 41%|ββββ | 38/93 [00:16<00:25, 2.18it/s] 42%|βββββ | 39/93 [00:17<00:23, 2.25it/s] 43%|βββββ | 40/93 [00:17<00:24, 2.19it/s] 44%|βββββ | 41/93 [00:18<00:26, 1.99it/s] 45%|βββββ | 42/93 [00:19<00:26, 1.92it/s] 46%|βββββ | 43/93 [00:19<00:27, 1.81it/s] 47%|βββββ | 44/93 [00:20<00:25, 1.91it/s] 48%|βββββ | 45/93 [00:20<00:23, 2.07it/s] 49%|βββββ | 46/93 [00:21<00:23, 2.01it/s] 51%|βββββ | 47/93 [00:21<00:24, 1.86it/s] 52%|ββββββ | 48/93 [00:22<00:23, 1.91it/s] 53%|ββββββ | 49/93 [00:22<00:20, 2.14it/s] 54%|ββββββ | 50/93 [00:23<00:21, 2.00it/s] 55%|ββββββ | 51/93 [00:23<00:20, 2.02it/s] 56%|ββββββ | 52/93 [00:24<00:20, 1.99it/s] 57%|ββββββ | 53/93 [00:24<00:20, 1.99it/s] 58%|ββββββ | 54/93 [00:25<00:20, 1.87it/s] 59%|ββββββ | 55/93 [00:25<00:20, 1.88it/s] 60%|ββββββ | 56/93 [00:26<00:17, 2.12it/s] 61%|βββββββ | 57/93 [00:26<00:16, 2.15it/s] 62%|βββββββ | 58/93 [00:26<00:15, 2.24it/s] 63%|βββββββ | 59/93 [00:27<00:15, 2.23it/s] 65%|βββββββ | 60/93 [00:27<00:15, 2.11it/s] 66%|βββββββ | 61/93 [00:28<00:14, 2.29it/s] 67%|βββββββ | 62/93 [00:28<00:14, 2.19it/s] 68%|βββββββ | 63/93 [00:29<00:13, 2.19it/s] 69%|βββββββ | 64/93 [00:31<00:27, 1.07it/s] 70%|βββββββ | 65/93 [00:31<00:22, 1.27it/s] 71%|βββββββ | 66/93 [00:32<00:20, 1.35it/s] 72%|ββββββββ | 67/93 [00:32<00:17, 1.52it/s] 73%|ββββββββ | 68/93 [00:33<00:17, 1.47it/s] 74%|ββββββββ | 69/93 [00:34<00:15, 1.59it/s] 75%|ββββββββ | 70/93 [00:34<00:14, 1.63it/s] 76%|ββββββββ | 71/93 [00:35<00:12, 1.78it/s] 77%|ββββββββ | 72/93 [00:35<00:11, 1.86it/s] 78%|ββββββββ | 73/93 [00:35<00:09, 2.02it/s] 80%|ββββββββ | 74/93 [00:36<00:09, 2.00it/s] 81%|ββββββββ | 75/93 [00:36<00:08, 2.09it/s] 82%|βββββββββ | 76/93 [00:37<00:08, 2.08it/s] 83%|βββββββββ | 77/93 [00:37<00:07, 2.13it/s] 84%|βββββββββ | 78/93 [00:38<00:07, 2.12it/s] 85%|βββββββββ | 79/93 [00:38<00:06, 2.02it/s] 86%|βββββββββ | 80/93 [00:39<00:06, 1.87it/s] 87%|βββββββββ | 81/93 [00:39<00:06, 1.87it/s] 88%|βββββββββ | 82/93 [00:40<00:05, 2.03it/s] 89%|βββββββββ | 83/93 [00:40<00:04, 2.04it/s] 90%|βββββββββ | 84/93 [00:41<00:04, 1.94it/s] 91%|ββββββββββ| 85/93 [00:41<00:03, 2.03it/s] 92%|ββββββββββ| 86/93 [00:42<00:03, 2.15it/s] 94%|ββββββββββ| 87/93 [00:42<00:02, 2.11it/s] 95%|ββββββββββ| 88/93 [00:43<00:02, 2.05it/s] 96%|ββββββββββ| 89/93 [00:43<00:01, 2.00it/s] 97%|ββββββββββ| 90/93 [00:44<00:01, 2.06it/s] 98%|ββββββββββ| 91/93 [00:44<00:01, 2.00it/s] 99%|ββββββββββ| 92/93 [00:45<00:00, 2.08it/s] 100%|ββββββββββ| 93/93 [00:45<00:00, 2.19it/s] 100%|ββββββββββ| 93/93 [00:45<00:00, 2.03it/s] | |
| ***** predict_test_pt_PT metrics ***** | |
| predict_ex_match_acc = 0.688 | |
| predict_ex_match_acc_stderr = 0.0085 | |
| predict_intent_acc = 0.8742 | |
| predict_intent_acc_stderr = 0.0061 | |
| predict_loss = 0.1455 | |
| predict_runtime = 0:00:46.29 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 64.24 | |
| predict_slot_micro_f1 = 0.777 | |
| predict_slot_micro_f1_stderr = 0.0029 | |
| predict_steps_per_second = 2.009 | |
| 06/10/2024 22:41:01 - INFO - __main__ - *** test_pl_PL *** | |
| [INFO|trainer.py:718] 2024-06-10 22:41:01,217 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:41:01,222 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:41:01,222 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:41:01,223 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:14, 6.19it/s] 3%|β | 3/93 [00:00<00:22, 4.04it/s] 4%|β | 4/93 [00:01<00:24, 3.63it/s] 5%|β | 5/93 [00:01<00:32, 2.71it/s] 6%|β | 6/93 [00:01<00:32, 2.67it/s] 8%|β | 7/93 [00:02<00:32, 2.64it/s] 9%|β | 8/93 [00:02<00:32, 2.60it/s] 10%|β | 9/93 [00:03<00:32, 2.62it/s] 11%|β | 10/93 [00:03<00:31, 2.62it/s] 12%|ββ | 11/93 [00:03<00:33, 2.44it/s] 13%|ββ | 12/93 [00:04<00:33, 2.44it/s] 14%|ββ | 13/93 [00:04<00:32, 2.45it/s] 15%|ββ | 14/93 [00:05<00:35, 2.26it/s] 16%|ββ | 15/93 [00:05<00:34, 2.26it/s] 17%|ββ | 16/93 [00:06<00:32, 2.37it/s] 18%|ββ | 17/93 [00:06<00:33, 2.28it/s] 19%|ββ | 18/93 [00:06<00:31, 2.37it/s] 20%|ββ | 19/93 [00:07<00:31, 2.34it/s] 22%|βββ | 20/93 [00:07<00:29, 2.49it/s] 23%|βββ | 21/93 [00:08<00:28, 2.52it/s] 24%|βββ | 22/93 [00:08<00:30, 2.33it/s] 25%|βββ | 23/93 [00:09<00:28, 2.42it/s] 26%|βββ | 24/93 [00:09<00:29, 2.36it/s] 27%|βββ | 25/93 [00:10<00:33, 2.05it/s] 28%|βββ | 26/93 [00:10<00:33, 2.00it/s] 29%|βββ | 27/93 [00:11<00:30, 2.16it/s] 30%|βββ | 28/93 [00:11<00:28, 2.31it/s] 31%|βββ | 29/93 [00:11<00:26, 2.44it/s] 32%|ββββ | 30/93 [00:12<00:27, 2.32it/s] 33%|ββββ | 31/93 [00:12<00:26, 2.37it/s] 34%|ββββ | 32/93 [00:12<00:24, 2.44it/s] 35%|ββββ | 33/93 [00:13<00:24, 2.40it/s] 37%|ββββ | 34/93 [00:13<00:24, 2.44it/s] 38%|ββββ | 35/93 [00:14<00:22, 2.55it/s] 39%|ββββ | 36/93 [00:14<00:20, 2.76it/s] 40%|ββββ | 37/93 [00:14<00:19, 2.89it/s] 41%|ββββ | 38/93 [00:15<00:21, 2.57it/s] 42%|βββββ | 39/93 [00:15<00:20, 2.66it/s] 43%|βββββ | 40/93 [00:16<00:20, 2.58it/s] 44%|βββββ | 41/93 [00:16<00:21, 2.42it/s] 45%|βββββ | 42/93 [00:16<00:21, 2.41it/s] 46%|βββββ | 43/93 [00:17<00:23, 2.13it/s] 47%|βββββ | 44/93 [00:17<00:21, 2.26it/s] 48%|βββββ | 45/93 [00:18<00:20, 2.39it/s] 49%|βββββ | 46/93 [00:18<00:20, 2.28it/s] 51%|βββββ | 47/93 [00:19<00:20, 2.23it/s] 52%|ββββββ | 48/93 [00:19<00:19, 2.29it/s] 53%|ββββββ | 49/93 [00:19<00:18, 2.44it/s] 54%|ββββββ | 50/93 [00:20<00:18, 2.32it/s] 55%|ββββββ | 51/93 [00:20<00:18, 2.25it/s] 56%|ββββββ | 52/93 [00:21<00:19, 2.14it/s] 57%|ββββββ | 53/93 [00:21<00:18, 2.12it/s] 58%|ββββββ | 54/93 [00:22<00:17, 2.21it/s] 59%|ββββββ | 55/93 [00:22<00:15, 2.38it/s] 60%|ββββββ | 56/93 [00:22<00:14, 2.57it/s] 61%|βββββββ | 57/93 [00:23<00:14, 2.52it/s] 62%|βββββββ | 58/93 [00:23<00:13, 2.61it/s] 63%|βββββββ | 59/93 [00:24<00:13, 2.58it/s] 65%|βββββββ | 60/93 [00:24<00:13, 2.48it/s] 66%|βββββββ | 61/93 [00:24<00:12, 2.51it/s] 67%|βββββββ | 62/93 [00:25<00:13, 2.31it/s] 68%|βββββββ | 63/93 [00:25<00:12, 2.44it/s] 69%|βββββββ | 64/93 [00:27<00:25, 1.12it/s] 70%|βββββββ | 65/93 [00:28<00:20, 1.34it/s] 71%|βββββββ | 66/93 [00:28<00:17, 1.57it/s] 72%|ββββββββ | 67/93 [00:29<00:14, 1.76it/s] 73%|ββββββββ | 68/93 [00:29<00:14, 1.72it/s] 74%|ββββββββ | 69/93 [00:30<00:12, 1.90it/s] 75%|ββββββββ | 70/93 [00:30<00:11, 2.04it/s] 76%|ββββββββ | 71/93 [00:30<00:10, 2.09it/s] 77%|ββββββββ | 72/93 [00:31<00:10, 2.09it/s] 78%|ββββββββ | 73/93 [00:31<00:08, 2.25it/s] 80%|ββββββββ | 74/93 [00:32<00:08, 2.21it/s] 81%|ββββββββ | 75/93 [00:32<00:07, 2.40it/s] 82%|βββββββββ | 76/93 [00:33<00:07, 2.36it/s] 83%|βββββββββ | 77/93 [00:33<00:06, 2.50it/s] 84%|βββββββββ | 78/93 [00:33<00:05, 2.68it/s] 85%|βββββββββ | 79/93 [00:34<00:06, 2.25it/s] 86%|βββββββββ | 80/93 [00:34<00:06, 2.01it/s] 87%|βββββββββ | 81/93 [00:35<00:05, 2.18it/s] 88%|βββββββββ | 82/93 [00:35<00:04, 2.33it/s] 89%|βββββββββ | 83/93 [00:36<00:04, 2.39it/s] 90%|βββββββββ | 84/93 [00:36<00:04, 2.21it/s] 91%|ββββββββββ| 85/93 [00:37<00:03, 2.19it/s] 92%|ββββββββββ| 86/93 [00:37<00:03, 2.30it/s] 94%|ββββββββββ| 87/93 [00:37<00:02, 2.36it/s] 95%|ββββββββββ| 88/93 [00:38<00:02, 2.41it/s] 96%|ββββββββββ| 89/93 [00:38<00:01, 2.35it/s] 97%|ββββββββββ| 90/93 [00:39<00:01, 2.42it/s] 98%|ββββββββββ| 91/93 [00:39<00:00, 2.30it/s] 99%|ββββββββββ| 92/93 [00:39<00:00, 2.29it/s] 100%|ββββββββββ| 93/93 [00:40<00:00, 2.45it/s] 100%|ββββββββββ| 93/93 [00:40<00:00, 2.30it/s] | |
| ***** predict_test_pl_PL metrics ***** | |
| predict_ex_match_acc = 0.6577 | |
| predict_ex_match_acc_stderr = 0.0087 | |
| predict_intent_acc = 0.8753 | |
| predict_intent_acc_stderr = 0.0061 | |
| predict_loss = 0.1657 | |
| predict_runtime = 0:00:41.03 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 72.472 | |
| predict_slot_micro_f1 = 0.7381 | |
| predict_slot_micro_f1_stderr = 0.0034 | |
| predict_steps_per_second = 2.266 | |
| 06/10/2024 22:41:42 - INFO - __main__ - *** test_nl_NL *** | |
| [INFO|trainer.py:718] 2024-06-10 22:41:42,453 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:41:42,456 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:41:42,456 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:41:42,457 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:22, 4.13it/s] 3%|β | 3/93 [00:00<00:26, 3.35it/s] 4%|β | 4/93 [00:01<00:28, 3.15it/s] 5%|β | 5/93 [00:01<00:33, 2.60it/s] 6%|β | 6/93 [00:02<00:33, 2.60it/s] 8%|β | 7/93 [00:02<00:32, 2.63it/s] 9%|β | 8/93 [00:02<00:33, 2.57it/s] 10%|β | 9/93 [00:03<00:34, 2.45it/s] 11%|β | 10/93 [00:03<00:33, 2.48it/s] 12%|ββ | 11/93 [00:04<00:32, 2.49it/s] 13%|ββ | 12/93 [00:04<00:32, 2.46it/s] 14%|ββ | 13/93 [00:04<00:33, 2.41it/s] 15%|ββ | 14/93 [00:05<00:35, 2.20it/s] 16%|ββ | 15/93 [00:05<00:35, 2.22it/s] 17%|ββ | 16/93 [00:06<00:35, 2.19it/s] 18%|ββ | 17/93 [00:06<00:35, 2.16it/s] 19%|ββ | 18/93 [00:07<00:35, 2.11it/s] 20%|ββ | 19/93 [00:07<00:34, 2.14it/s] 22%|βββ | 20/93 [00:08<00:33, 2.19it/s] 23%|βββ | 21/93 [00:08<00:31, 2.28it/s] 24%|βββ | 22/93 [00:09<00:33, 2.14it/s] 25%|βββ | 23/93 [00:09<00:31, 2.26it/s] 26%|βββ | 24/93 [00:09<00:29, 2.37it/s] 27%|βββ | 25/93 [00:10<00:29, 2.33it/s] 28%|βββ | 26/93 [00:10<00:29, 2.28it/s] 29%|βββ | 27/93 [00:11<00:28, 2.33it/s] 30%|βββ | 28/93 [00:11<00:27, 2.37it/s] 31%|βββ | 29/93 [00:12<00:26, 2.41it/s] 32%|ββββ | 30/93 [00:12<00:27, 2.30it/s] 33%|ββββ | 31/93 [00:13<00:29, 2.09it/s] 34%|ββββ | 32/93 [00:13<00:29, 2.04it/s] 35%|ββββ | 33/93 [00:14<00:29, 2.01it/s] 37%|ββββ | 34/93 [00:14<00:28, 2.09it/s] 38%|ββββ | 35/93 [00:15<00:27, 2.14it/s] 39%|ββββ | 36/93 [00:15<00:24, 2.31it/s] 40%|ββββ | 37/93 [00:15<00:23, 2.41it/s] 41%|ββββ | 38/93 [00:16<00:24, 2.26it/s] 42%|βββββ | 39/93 [00:16<00:24, 2.21it/s] 43%|βββββ | 40/93 [00:17<00:23, 2.23it/s] 44%|βββββ | 41/93 [00:17<00:23, 2.24it/s] 45%|βββββ | 42/93 [00:18<00:24, 2.08it/s] 46%|βββββ | 43/93 [00:18<00:26, 1.91it/s] 47%|βββββ | 44/93 [00:19<00:23, 2.06it/s] 48%|βββββ | 45/93 [00:19<00:22, 2.17it/s] 49%|βββββ | 46/93 [00:20<00:22, 2.06it/s] 51%|βββββ | 47/93 [00:20<00:22, 2.03it/s] 52%|ββββββ | 48/93 [00:21<00:21, 2.13it/s] 53%|ββββββ | 49/93 [00:21<00:19, 2.22it/s] 54%|ββββββ | 50/93 [00:22<00:19, 2.18it/s] 55%|ββββββ | 51/93 [00:22<00:19, 2.17it/s] 56%|ββββββ | 52/93 [00:22<00:18, 2.19it/s] 57%|ββββββ | 53/93 [00:23<00:19, 2.06it/s] 58%|ββββββ | 54/93 [00:23<00:18, 2.09it/s] 59%|ββββββ | 55/93 [00:24<00:18, 2.08it/s] 60%|ββββββ | 56/93 [00:24<00:17, 2.13it/s] 61%|βββββββ | 57/93 [00:25<00:17, 2.08it/s] 62%|βββββββ | 58/93 [00:25<00:15, 2.21it/s] 63%|βββββββ | 59/93 [00:26<00:15, 2.19it/s] 65%|βββββββ | 60/93 [00:26<00:15, 2.15it/s] 66%|βββββββ | 61/93 [00:27<00:13, 2.29it/s] 67%|βββββββ | 62/93 [00:27<00:14, 2.13it/s] 68%|βββββββ | 63/93 [00:28<00:13, 2.16it/s] 69%|βββββββ | 64/93 [00:30<00:26, 1.08it/s] 70%|βββββββ | 65/93 [00:30<00:21, 1.29it/s] 71%|βββββββ | 66/93 [00:30<00:18, 1.49it/s] 72%|ββββββββ | 67/93 [00:31<00:16, 1.60it/s] 73%|ββββββββ | 68/93 [00:31<00:14, 1.73it/s] 74%|ββββββββ | 69/93 [00:32<00:12, 1.85it/s] 75%|ββββββββ | 70/93 [00:32<00:12, 1.88it/s] 76%|ββββββββ | 71/93 [00:33<00:10, 2.02it/s] 77%|ββββββββ | 72/93 [00:33<00:10, 1.97it/s] 78%|ββββββββ | 73/93 [00:34<00:09, 2.12it/s] 80%|ββββββββ | 74/93 [00:34<00:09, 2.01it/s] 81%|ββββββββ | 75/93 [00:35<00:08, 2.13it/s] 82%|βββββββββ | 76/93 [00:35<00:08, 2.11it/s] 83%|βββββββββ | 77/93 [00:36<00:07, 2.17it/s] 84%|βββββββββ | 78/93 [00:36<00:07, 2.11it/s] 85%|βββββββββ | 79/93 [00:37<00:07, 1.87it/s] 86%|βββββββββ | 80/93 [00:37<00:07, 1.74it/s] 87%|βββββββββ | 81/93 [00:38<00:06, 1.87it/s] 88%|βββββββββ | 82/93 [00:38<00:05, 2.07it/s] 89%|βββββββββ | 83/93 [00:39<00:04, 2.15it/s] 90%|βββββββββ | 84/93 [00:39<00:04, 1.99it/s] 91%|ββββββββββ| 85/93 [00:40<00:03, 2.10it/s] 92%|ββββββββββ| 86/93 [00:40<00:03, 2.19it/s] 94%|ββββββββββ| 87/93 [00:41<00:02, 2.14it/s] 95%|ββββββββββ| 88/93 [00:41<00:02, 2.22it/s] 96%|ββββββββββ| 89/93 [00:41<00:01, 2.19it/s] 97%|ββββββββββ| 90/93 [00:42<00:01, 2.26it/s] 98%|ββββββββββ| 91/93 [00:42<00:00, 2.08it/s] 99%|ββββββββββ| 92/93 [00:43<00:00, 2.13it/s] 100%|ββββββββββ| 93/93 [00:43<00:00, 2.17it/s] 100%|ββββββββββ| 93/93 [00:44<00:00, 2.11it/s] | |
| ***** predict_test_nl_NL metrics ***** | |
| predict_ex_match_acc = 0.6974 | |
| predict_ex_match_acc_stderr = 0.0084 | |
| predict_intent_acc = 0.8769 | |
| predict_intent_acc_stderr = 0.006 | |
| predict_loss = 0.1494 | |
| predict_runtime = 0:00:44.48 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 66.861 | |
| predict_slot_micro_f1 = 0.7816 | |
| predict_slot_micro_f1_stderr = 0.0029 | |
| predict_steps_per_second = 2.091 | |
| 06/10/2024 22:42:27 - INFO - __main__ - *** test_hu_HU *** | |
| [INFO|trainer.py:718] 2024-06-10 22:42:27,132 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:42:27,134 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:42:27,134 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:42:27,135 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:20, 4.36it/s] 3%|β | 3/93 [00:00<00:25, 3.54it/s] 4%|β | 4/93 [00:01<00:29, 3.05it/s] 5%|β | 5/93 [00:01<00:32, 2.67it/s] 6%|β | 6/93 [00:02<00:32, 2.64it/s] 8%|β | 7/93 [00:02<00:32, 2.63it/s] 9%|β | 8/93 [00:02<00:33, 2.53it/s] 10%|β | 9/93 [00:03<00:34, 2.42it/s] 11%|β | 10/93 [00:03<00:33, 2.50it/s] 12%|ββ | 11/93 [00:04<00:35, 2.31it/s] 13%|ββ | 12/93 [00:04<00:33, 2.44it/s] 14%|ββ | 13/93 [00:04<00:32, 2.46it/s] 15%|ββ | 14/93 [00:05<00:35, 2.24it/s] 16%|ββ | 15/93 [00:05<00:33, 2.33it/s] 17%|ββ | 16/93 [00:06<00:31, 2.45it/s] 18%|ββ | 17/93 [00:06<00:33, 2.29it/s] 19%|ββ | 18/93 [00:07<00:31, 2.40it/s] 20%|ββ | 19/93 [00:07<00:30, 2.40it/s] 22%|βββ | 20/93 [00:07<00:30, 2.40it/s] 23%|βββ | 21/93 [00:08<00:28, 2.55it/s] 24%|βββ | 22/93 [00:08<00:29, 2.39it/s] 25%|βββ | 23/93 [00:09<00:28, 2.47it/s] 26%|βββ | 24/93 [00:09<00:26, 2.57it/s] 27%|βββ | 25/93 [00:10<00:30, 2.25it/s] 28%|βββ | 26/93 [00:10<00:27, 2.42it/s] 29%|βββ | 27/93 [00:10<00:26, 2.47it/s] 30%|βββ | 28/93 [00:11<00:25, 2.56it/s] 31%|βββ | 29/93 [00:11<00:24, 2.56it/s] 32%|ββββ | 30/93 [00:12<00:29, 2.16it/s] 33%|ββββ | 31/93 [00:12<00:28, 2.17it/s] 34%|ββββ | 32/93 [00:13<00:26, 2.26it/s] 35%|ββββ | 33/93 [00:13<00:27, 2.21it/s] 37%|ββββ | 34/93 [00:13<00:26, 2.19it/s] 38%|ββββ | 35/93 [00:14<00:25, 2.26it/s] 39%|ββββ | 36/93 [00:14<00:23, 2.46it/s] 40%|ββββ | 37/93 [00:14<00:20, 2.76it/s] 41%|ββββ | 38/93 [00:15<00:21, 2.54it/s] 42%|βββββ | 39/93 [00:15<00:20, 2.62it/s] 43%|βββββ | 40/93 [00:16<00:20, 2.63it/s] 44%|βββββ | 41/93 [00:16<00:20, 2.51it/s] 45%|βββββ | 42/93 [00:17<00:21, 2.34it/s] 46%|βββββ | 43/93 [00:17<00:21, 2.31it/s] 47%|βββββ | 44/93 [00:17<00:20, 2.40it/s] 48%|βββββ | 45/93 [00:18<00:19, 2.41it/s] 49%|βββββ | 46/93 [00:18<00:19, 2.36it/s] 51%|βββββ | 47/93 [00:19<00:21, 2.17it/s] 52%|ββββββ | 48/93 [00:19<00:19, 2.36it/s] 53%|ββββββ | 49/93 [00:19<00:17, 2.54it/s] 54%|ββββββ | 50/93 [00:20<00:17, 2.50it/s] 55%|ββββββ | 51/93 [00:20<00:16, 2.52it/s] 56%|ββββββ | 52/93 [00:21<00:16, 2.44it/s] 57%|ββββββ | 53/93 [00:21<00:17, 2.33it/s] 58%|ββββββ | 54/93 [00:22<00:17, 2.21it/s] 59%|ββββββ | 55/93 [00:22<00:17, 2.19it/s] 60%|ββββββ | 56/93 [00:22<00:15, 2.40it/s] 61%|βββββββ | 57/93 [00:23<00:15, 2.36it/s] 62%|βββββββ | 58/93 [00:23<00:13, 2.54it/s] 63%|βββββββ | 59/93 [00:24<00:12, 2.69it/s] 65%|βββββββ | 60/93 [00:24<00:12, 2.65it/s] 66%|βββββββ | 61/93 [00:24<00:12, 2.64it/s] 67%|βββββββ | 62/93 [00:25<00:12, 2.42it/s] 68%|βββββββ | 63/93 [00:25<00:12, 2.50it/s] 69%|βββββββ | 64/93 [00:27<00:25, 1.12it/s] 70%|βββββββ | 65/93 [00:28<00:20, 1.35it/s] 71%|βββββββ | 66/93 [00:28<00:17, 1.57it/s] 72%|ββββββββ | 67/93 [00:28<00:14, 1.77it/s] 73%|ββββββββ | 68/93 [00:29<00:13, 1.88it/s] 74%|ββββββββ | 69/93 [00:29<00:11, 2.12it/s] 75%|ββββββββ | 70/93 [00:30<00:09, 2.34it/s] 76%|ββββββββ | 71/93 [00:30<00:09, 2.40it/s] 77%|ββββββββ | 72/93 [00:30<00:09, 2.25it/s] 78%|ββββββββ | 73/93 [00:31<00:08, 2.46it/s] 80%|ββββββββ | 74/93 [00:31<00:08, 2.25it/s] 81%|ββββββββ | 75/93 [00:32<00:07, 2.42it/s] 82%|βββββββββ | 76/93 [00:32<00:07, 2.35it/s] 83%|βββββββββ | 77/93 [00:32<00:06, 2.45it/s] 84%|βββββββββ | 78/93 [00:33<00:05, 2.58it/s] 85%|βββββββββ | 79/93 [00:33<00:06, 2.12it/s] 86%|βββββββββ | 80/93 [00:34<00:06, 1.98it/s] 87%|βββββββββ | 81/93 [00:34<00:05, 2.18it/s] 88%|βββββββββ | 82/93 [00:35<00:04, 2.35it/s] 89%|βββββββββ | 83/93 [00:35<00:04, 2.35it/s] 90%|βββββββββ | 84/93 [00:36<00:04, 2.19it/s] 91%|ββββββββββ| 85/93 [00:36<00:03, 2.25it/s] 92%|ββββββββββ| 86/93 [00:37<00:03, 2.30it/s] 94%|ββββββββββ| 87/93 [00:37<00:02, 2.28it/s] 95%|ββββββββββ| 88/93 [00:37<00:02, 2.28it/s] 96%|ββββββββββ| 89/93 [00:38<00:01, 2.22it/s] 97%|ββββββββββ| 90/93 [00:38<00:01, 2.25it/s] 98%|ββββββββββ| 91/93 [00:39<00:00, 2.10it/s] 99%|ββββββββββ| 92/93 [00:39<00:00, 2.18it/s] 100%|ββββββββββ| 93/93 [00:40<00:00, 2.29it/s] 100%|ββββββββββ| 93/93 [00:40<00:00, 2.29it/s] | |
| ***** predict_test_hu_HU metrics ***** | |
| predict_ex_match_acc = 0.6866 | |
| predict_ex_match_acc_stderr = 0.0085 | |
| predict_intent_acc = 0.8668 | |
| predict_intent_acc_stderr = 0.0062 | |
| predict_loss = 0.1564 | |
| predict_runtime = 0:00:41.00 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 72.526 | |
| predict_slot_micro_f1 = 0.7878 | |
| predict_slot_micro_f1_stderr = 0.0031 | |
| predict_steps_per_second = 2.268 | |
| 06/10/2024 22:43:08 - INFO - __main__ - *** test_ru_RU *** | |
| [INFO|trainer.py:718] 2024-06-10 22:43:08,343 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:43:08,345 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:43:08,345 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:43:08,346 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:18, 4.79it/s] 3%|β | 3/93 [00:00<00:24, 3.73it/s] 4%|β | 4/93 [00:01<00:26, 3.39it/s] 5%|β | 5/93 [00:01<00:29, 2.95it/s] 6%|β | 6/93 [00:01<00:30, 2.83it/s] 8%|β | 7/93 [00:02<00:31, 2.70it/s] 9%|β | 8/93 [00:02<00:32, 2.65it/s] 10%|β | 9/93 [00:03<00:32, 2.58it/s] 11%|β | 10/93 [00:03<00:33, 2.49it/s] 12%|ββ | 11/93 [00:03<00:32, 2.53it/s] 13%|ββ | 12/93 [00:04<00:32, 2.52it/s] 14%|ββ | 13/93 [00:04<00:31, 2.52it/s] 15%|ββ | 14/93 [00:05<00:36, 2.19it/s] 16%|ββ | 15/93 [00:05<00:35, 2.22it/s] 17%|ββ | 16/93 [00:06<00:32, 2.35it/s] 18%|ββ | 17/93 [00:06<00:33, 2.26it/s] 19%|ββ | 18/93 [00:06<00:31, 2.35it/s] 20%|ββ | 19/93 [00:07<00:31, 2.38it/s] 22%|βββ | 20/93 [00:07<00:29, 2.44it/s] 23%|βββ | 21/93 [00:08<00:28, 2.50it/s] 24%|βββ | 22/93 [00:08<00:31, 2.28it/s] 25%|βββ | 23/93 [00:09<00:30, 2.33it/s] 26%|βββ | 24/93 [00:09<00:28, 2.43it/s] 27%|βββ | 25/93 [00:10<00:30, 2.22it/s] 28%|βββ | 26/93 [00:10<00:30, 2.21it/s] 29%|βββ | 27/93 [00:10<00:28, 2.32it/s] 30%|βββ | 28/93 [00:11<00:27, 2.40it/s] 31%|βββ | 29/93 [00:11<00:25, 2.48it/s] 32%|ββββ | 30/93 [00:12<00:25, 2.45it/s] 33%|ββββ | 31/93 [00:12<00:26, 2.35it/s] 34%|ββββ | 32/93 [00:12<00:25, 2.42it/s] 35%|ββββ | 33/93 [00:13<00:24, 2.47it/s] 37%|ββββ | 34/93 [00:13<00:25, 2.34it/s] 38%|ββββ | 35/93 [00:14<00:24, 2.39it/s] 39%|ββββ | 36/93 [00:14<00:22, 2.54it/s] 40%|ββββ | 37/93 [00:14<00:20, 2.76it/s] 41%|ββββ | 38/93 [00:15<00:21, 2.56it/s] 42%|βββββ | 39/93 [00:15<00:21, 2.52it/s] 43%|βββββ | 40/93 [00:16<00:22, 2.36it/s] 44%|βββββ | 41/93 [00:16<00:22, 2.30it/s] 45%|βββββ | 42/93 [00:17<00:21, 2.32it/s] 46%|βββββ | 43/93 [00:17<00:23, 2.12it/s] 47%|βββββ | 44/93 [00:17<00:21, 2.27it/s] 48%|βββββ | 45/93 [00:18<00:21, 2.27it/s] 49%|βββββ | 46/93 [00:18<00:20, 2.28it/s] 51%|βββββ | 47/93 [00:19<00:24, 1.85it/s] 52%|ββββββ | 48/93 [00:19<00:21, 2.06it/s] 53%|ββββββ | 49/93 [00:20<00:19, 2.24it/s] 54%|ββββββ | 50/93 [00:20<00:18, 2.27it/s] 55%|ββββββ | 51/93 [00:21<00:19, 2.20it/s] 56%|ββββββ | 52/93 [00:21<00:18, 2.17it/s] 57%|ββββββ | 53/93 [00:22<00:19, 2.07it/s] 58%|ββββββ | 54/93 [00:22<00:18, 2.06it/s] 59%|ββββββ | 55/93 [00:23<00:17, 2.12it/s] 60%|ββββββ | 56/93 [00:23<00:15, 2.35it/s] 61%|βββββββ | 57/93 [00:23<00:15, 2.37it/s] 62%|βββββββ | 58/93 [00:24<00:13, 2.52it/s] 63%|βββββββ | 59/93 [00:24<00:14, 2.40it/s] 65%|βββββββ | 60/93 [00:25<00:14, 2.36it/s] 66%|βββββββ | 61/93 [00:25<00:13, 2.44it/s] 67%|βββββββ | 62/93 [00:25<00:13, 2.31it/s] 68%|βββββββ | 63/93 [00:26<00:12, 2.31it/s] 69%|βββββββ | 64/93 [00:28<00:26, 1.10it/s] 70%|βββββββ | 65/93 [00:28<00:21, 1.33it/s] 71%|βββββββ | 66/93 [00:29<00:17, 1.56it/s] 72%|ββββββββ | 67/93 [00:29<00:14, 1.76it/s] 73%|ββββββββ | 68/93 [00:30<00:14, 1.76it/s] 74%|ββββββββ | 69/93 [00:30<00:13, 1.84it/s] 75%|ββββββββ | 70/93 [00:31<00:11, 1.92it/s] 76%|ββββββββ | 71/93 [00:31<00:10, 2.05it/s] 77%|ββββββββ | 72/93 [00:32<00:10, 2.06it/s] 78%|ββββββββ | 73/93 [00:32<00:08, 2.26it/s] 80%|ββββββββ | 74/93 [00:32<00:09, 2.06it/s] 81%|ββββββββ | 75/93 [00:33<00:08, 2.22it/s] 82%|βββββββββ | 76/93 [00:33<00:07, 2.15it/s] 83%|βββββββββ | 77/93 [00:34<00:07, 2.11it/s] 84%|βββββββββ | 78/93 [00:34<00:07, 2.02it/s] 85%|βββββββββ | 79/93 [00:35<00:07, 1.98it/s] 86%|βββββββββ | 80/93 [00:35<00:06, 1.95it/s] 87%|βββββββββ | 81/93 [00:36<00:06, 1.86it/s] 88%|βββββββββ | 82/93 [00:36<00:05, 2.08it/s] 89%|βββββββββ | 83/93 [00:37<00:04, 2.23it/s] 90%|βββββββββ | 84/93 [00:37<00:04, 2.17it/s] 91%|ββββββββββ| 85/93 [00:38<00:03, 2.16it/s] 92%|ββββββββββ| 86/93 [00:38<00:03, 2.25it/s] 94%|ββββββββββ| 87/93 [00:39<00:02, 2.25it/s] 95%|ββββββββββ| 88/93 [00:39<00:02, 2.15it/s] 96%|ββββββββββ| 89/93 [00:40<00:01, 2.12it/s] 97%|ββββββββββ| 90/93 [00:40<00:01, 2.18it/s] 98%|ββββββββββ| 91/93 [00:41<00:00, 2.05it/s] 99%|ββββββββββ| 92/93 [00:41<00:00, 2.15it/s] 100%|ββββββββββ| 93/93 [00:41<00:00, 2.32it/s] 100%|ββββββββββ| 93/93 [00:41<00:00, 2.21it/s] | |
| ***** predict_test_ru_RU metrics ***** | |
| predict_ex_match_acc = 0.7028 | |
| predict_ex_match_acc_stderr = 0.0084 | |
| predict_intent_acc = 0.8769 | |
| predict_intent_acc_stderr = 0.006 | |
| predict_loss = 0.1495 | |
| predict_runtime = 0:00:42.44 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 70.064 | |
| predict_slot_micro_f1 = 0.7874 | |
| predict_slot_micro_f1_stderr = 0.0031 | |
| predict_steps_per_second = 2.191 | |
| 06/10/2024 22:43:50 - INFO - __main__ - *** test_tr_TR *** | |
| [INFO|trainer.py:718] 2024-06-10 22:43:50,993 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:43:50,995 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:43:50,996 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:43:50,996 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:17, 5.33it/s] 3%|β | 3/93 [00:00<00:23, 3.85it/s] 4%|β | 4/93 [00:01<00:24, 3.70it/s] 5%|β | 5/93 [00:01<00:28, 3.10it/s] 6%|β | 6/93 [00:01<00:29, 2.96it/s] 8%|β | 7/93 [00:02<00:30, 2.80it/s] 9%|β | 8/93 [00:02<00:29, 2.87it/s] 10%|β | 9/93 [00:03<00:32, 2.55it/s] 11%|β | 10/93 [00:03<00:33, 2.47it/s] 12%|ββ | 11/93 [00:03<00:33, 2.48it/s] 13%|ββ | 12/93 [00:04<00:31, 2.55it/s] 14%|ββ | 13/93 [00:04<00:32, 2.49it/s] 15%|ββ | 14/93 [00:05<00:35, 2.23it/s] 16%|ββ | 15/93 [00:05<00:36, 2.12it/s] 17%|ββ | 16/93 [00:06<00:34, 2.25it/s] 18%|ββ | 17/93 [00:06<00:33, 2.30it/s] 19%|ββ | 18/93 [00:06<00:31, 2.39it/s] 20%|ββ | 19/93 [00:07<00:31, 2.37it/s] 22%|βββ | 20/93 [00:07<00:28, 2.53it/s] 23%|βββ | 21/93 [00:08<00:27, 2.59it/s] 24%|βββ | 22/93 [00:08<00:29, 2.41it/s] 25%|βββ | 23/93 [00:08<00:28, 2.47it/s] 26%|βββ | 24/93 [00:09<00:28, 2.43it/s] 27%|βββ | 25/93 [00:09<00:27, 2.49it/s] 28%|βββ | 26/93 [00:10<00:27, 2.42it/s] 29%|βββ | 27/93 [00:10<00:26, 2.45it/s] 30%|βββ | 28/93 [00:10<00:24, 2.65it/s] 31%|βββ | 29/93 [00:11<00:23, 2.75it/s] 32%|ββββ | 30/93 [00:11<00:23, 2.70it/s] 33%|ββββ | 31/93 [00:11<00:23, 2.59it/s] 34%|ββββ | 32/93 [00:12<00:23, 2.63it/s] 35%|ββββ | 33/93 [00:12<00:23, 2.56it/s] 37%|ββββ | 34/93 [00:13<00:23, 2.54it/s] 38%|ββββ | 35/93 [00:13<00:22, 2.61it/s] 39%|ββββ | 36/93 [00:13<00:20, 2.79it/s] 40%|ββββ | 37/93 [00:14<00:18, 3.07it/s] 41%|ββββ | 38/93 [00:14<00:20, 2.71it/s] 42%|βββββ | 39/93 [00:14<00:19, 2.74it/s] 43%|βββββ | 40/93 [00:15<00:19, 2.67it/s] 44%|βββββ | 41/93 [00:15<00:20, 2.58it/s] 45%|βββββ | 42/93 [00:16<00:20, 2.48it/s] 46%|βββββ | 43/93 [00:16<00:22, 2.24it/s] 47%|βββββ | 44/93 [00:17<00:20, 2.34it/s] 48%|βββββ | 45/93 [00:17<00:19, 2.49it/s] 49%|βββββ | 46/93 [00:17<00:19, 2.45it/s] 51%|βββββ | 47/93 [00:18<00:19, 2.41it/s] 52%|ββββββ | 48/93 [00:18<00:18, 2.41it/s] 53%|ββββββ | 49/93 [00:19<00:17, 2.58it/s] 54%|ββββββ | 50/93 [00:19<00:18, 2.32it/s] 55%|ββββββ | 51/93 [00:19<00:17, 2.37it/s] 56%|ββββββ | 52/93 [00:20<00:17, 2.35it/s] 57%|ββββββ | 53/93 [00:20<00:18, 2.17it/s] 58%|ββββββ | 54/93 [00:21<00:18, 2.10it/s] 59%|ββββββ | 55/93 [00:21<00:17, 2.22it/s] 60%|ββββββ | 56/93 [00:22<00:15, 2.41it/s] 61%|βββββββ | 57/93 [00:22<00:14, 2.44it/s] 62%|βββββββ | 58/93 [00:22<00:13, 2.60it/s] 63%|βββββββ | 59/93 [00:23<00:12, 2.72it/s] 65%|βββββββ | 60/93 [00:23<00:13, 2.52it/s] 66%|βββββββ | 61/93 [00:24<00:12, 2.56it/s] 67%|βββββββ | 62/93 [00:24<00:13, 2.36it/s] 68%|βββββββ | 63/93 [00:25<00:13, 2.30it/s] 69%|βββββββ | 64/93 [00:27<00:26, 1.11it/s] 70%|βββββββ | 65/93 [00:27<00:20, 1.36it/s] 71%|βββββββ | 66/93 [00:27<00:16, 1.59it/s] 72%|ββββββββ | 67/93 [00:28<00:14, 1.78it/s] 73%|ββββββββ | 68/93 [00:28<00:13, 1.81it/s] 74%|ββββββββ | 69/93 [00:29<00:12, 1.96it/s] 75%|ββββββββ | 70/93 [00:29<00:11, 2.09it/s] 76%|ββββββββ | 71/93 [00:29<00:09, 2.20it/s] 77%|ββββββββ | 72/93 [00:30<00:09, 2.22it/s] 78%|ββββββββ | 73/93 [00:30<00:08, 2.40it/s] 80%|ββββββββ | 74/93 [00:31<00:08, 2.33it/s] 81%|ββββββββ | 75/93 [00:31<00:07, 2.37it/s] 82%|βββββββββ | 76/93 [00:31<00:07, 2.39it/s] 83%|βββββββββ | 77/93 [00:32<00:06, 2.52it/s] 84%|βββββββββ | 78/93 [00:32<00:05, 2.57it/s] 85%|βββββββββ | 79/93 [00:33<00:06, 2.19it/s] 86%|βββββββββ | 80/93 [00:33<00:06, 2.01it/s] 87%|βββββββββ | 81/93 [00:34<00:05, 2.05it/s] 88%|βββββββββ | 82/93 [00:34<00:04, 2.23it/s] 89%|βββββββββ | 83/93 [00:35<00:04, 2.33it/s] 90%|βββββββββ | 84/93 [00:35<00:03, 2.25it/s] 91%|ββββββββββ| 85/93 [00:35<00:03, 2.27it/s] 92%|ββββββββββ| 86/93 [00:36<00:02, 2.36it/s] 94%|ββββββββββ| 87/93 [00:36<00:02, 2.32it/s] 95%|ββββββββββ| 88/93 [00:37<00:02, 2.29it/s] 96%|ββββββββββ| 89/93 [00:37<00:01, 2.33it/s] 97%|ββββββββββ| 90/93 [00:38<00:01, 2.40it/s] 98%|ββββββββββ| 91/93 [00:38<00:00, 2.26it/s] 99%|ββββββββββ| 92/93 [00:38<00:00, 2.32it/s] 100%|ββββββββββ| 93/93 [00:39<00:00, 2.48it/s] 100%|ββββββββββ| 93/93 [00:39<00:00, 2.35it/s] | |
| ***** predict_test_tr_TR metrics ***** | |
| predict_ex_match_acc = 0.6856 | |
| predict_ex_match_acc_stderr = 0.0085 | |
| predict_intent_acc = 0.8675 | |
| predict_intent_acc_stderr = 0.0062 | |
| predict_loss = 0.1582 | |
| predict_runtime = 0:00:39.89 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 74.54 | |
| predict_slot_micro_f1 = 0.7798 | |
| predict_slot_micro_f1_stderr = 0.0033 | |
| predict_steps_per_second = 2.331 | |
| 06/10/2024 22:44:31 - INFO - __main__ - *** test_vi_VN *** | |
| [INFO|trainer.py:718] 2024-06-10 22:44:31,087 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:44:31,090 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:44:31,091 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:44:31,091 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:31, 2.86it/s] 3%|β | 3/93 [00:01<00:36, 2.44it/s] 4%|β | 4/93 [00:01<00:38, 2.33it/s] 5%|β | 5/93 [00:02<00:42, 2.05it/s] 6%|β | 6/93 [00:02<00:42, 2.06it/s] 8%|β | 7/93 [00:03<00:43, 1.97it/s] 9%|β | 8/93 [00:03<00:41, 2.03it/s] 10%|β | 9/93 [00:04<00:40, 2.07it/s] 11%|β | 10/93 [00:04<00:41, 2.00it/s] 12%|ββ | 11/93 [00:05<00:43, 1.89it/s] 13%|ββ | 12/93 [00:05<00:43, 1.85it/s] 14%|ββ | 13/93 [00:06<00:41, 1.94it/s] 15%|ββ | 14/93 [00:07<00:45, 1.72it/s] 16%|ββ | 15/93 [00:07<00:44, 1.74it/s] 17%|ββ | 16/93 [00:08<00:44, 1.73it/s] 18%|ββ | 17/93 [00:08<00:45, 1.69it/s] 19%|ββ | 18/93 [00:09<00:42, 1.78it/s] 20%|ββ | 19/93 [00:09<00:42, 1.75it/s] 22%|βββ | 20/93 [00:10<00:40, 1.80it/s] 23%|βββ | 21/93 [00:11<00:39, 1.82it/s] 24%|βββ | 22/93 [00:11<00:38, 1.84it/s] 25%|βββ | 23/93 [00:12<00:37, 1.87it/s] 26%|βββ | 24/93 [00:12<00:38, 1.82it/s] 27%|βββ | 25/93 [00:14<00:54, 1.25it/s] 28%|βββ | 26/93 [00:14<00:48, 1.38it/s] 29%|βββ | 27/93 [00:15<00:42, 1.55it/s] 30%|βββ | 28/93 [00:15<00:37, 1.73it/s] 31%|βββ | 29/93 [00:15<00:34, 1.84it/s] 32%|ββββ | 30/93 [00:16<00:33, 1.86it/s] 33%|ββββ | 31/93 [00:17<00:33, 1.83it/s] 34%|ββββ | 32/93 [00:17<00:33, 1.82it/s] 35%|ββββ | 33/93 [00:18<00:33, 1.78it/s] 37%|ββββ | 34/93 [00:18<00:36, 1.62it/s] 38%|ββββ | 35/93 [00:19<00:33, 1.75it/s] 39%|ββββ | 36/93 [00:19<00:33, 1.72it/s] 40%|ββββ | 37/93 [00:20<00:31, 1.80it/s] 41%|ββββ | 38/93 [00:21<00:35, 1.55it/s] 42%|βββββ | 39/93 [00:21<00:32, 1.64it/s] 43%|βββββ | 40/93 [00:22<00:32, 1.64it/s] 44%|βββββ | 41/93 [00:23<00:33, 1.55it/s] 45%|βββββ | 42/93 [00:23<00:33, 1.54it/s] 46%|βββββ | 43/93 [00:24<00:33, 1.49it/s] 47%|βββββ | 44/93 [00:25<00:32, 1.52it/s] 48%|βββββ | 45/93 [00:25<00:30, 1.59it/s] 49%|βββββ | 46/93 [00:26<00:30, 1.55it/s] 51%|βββββ | 47/93 [00:27<00:28, 1.61it/s] 52%|ββββββ | 48/93 [00:27<00:27, 1.65it/s] 53%|ββββββ | 49/93 [00:28<00:25, 1.72it/s] 54%|ββββββ | 50/93 [00:28<00:25, 1.71it/s] 55%|ββββββ | 51/93 [00:29<00:24, 1.75it/s] 56%|ββββββ | 52/93 [00:29<00:23, 1.75it/s] 57%|ββββββ | 53/93 [00:30<00:23, 1.69it/s] 58%|ββββββ | 54/93 [00:31<00:24, 1.57it/s] 59%|ββββββ | 55/93 [00:31<00:23, 1.65it/s] 60%|ββββββ | 56/93 [00:32<00:20, 1.81it/s] 61%|βββββββ | 57/93 [00:32<00:18, 1.90it/s] 62%|βββββββ | 58/93 [00:33<00:18, 1.90it/s] 63%|βββββββ | 59/93 [00:33<00:17, 1.92it/s] 65%|βββββββ | 60/93 [00:34<00:16, 1.95it/s] 66%|βββββββ | 61/93 [00:34<00:15, 2.06it/s] 67%|βββββββ | 62/93 [00:35<00:18, 1.72it/s] 68%|βββββββ | 63/93 [00:36<00:17, 1.67it/s] 69%|βββββββ | 64/93 [00:38<00:30, 1.05s/it] 70%|βββββββ | 65/93 [00:38<00:25, 1.10it/s] 71%|βββββββ | 66/93 [00:39<00:21, 1.25it/s] 72%|ββββββββ | 67/93 [00:39<00:19, 1.35it/s] 73%|ββββββββ | 68/93 [00:40<00:18, 1.32it/s] 74%|ββββββββ | 69/93 [00:41<00:16, 1.42it/s] 75%|ββββββββ | 70/93 [00:41<00:15, 1.51it/s] 76%|ββββββββ | 71/93 [00:42<00:14, 1.51it/s] 77%|ββββββββ | 72/93 [00:43<00:14, 1.50it/s] 78%|ββββββββ | 73/93 [00:43<00:12, 1.63it/s] 80%|ββββββββ | 74/93 [00:44<00:11, 1.70it/s] 81%|ββββββββ | 75/93 [00:44<00:10, 1.74it/s] 82%|βββββββββ | 76/93 [00:46<00:16, 1.02it/s] 83%|βββββββββ | 77/93 [00:47<00:13, 1.16it/s] 84%|βββββββββ | 78/93 [00:47<00:11, 1.31it/s] 85%|βββββββββ | 79/93 [00:48<00:10, 1.38it/s] 86%|βββββββββ | 80/93 [00:50<00:14, 1.10s/it] 87%|βββββββββ | 81/93 [00:51<00:11, 1.01it/s] 88%|βββββββββ | 82/93 [00:51<00:09, 1.20it/s] 89%|βββββββββ | 83/93 [00:52<00:07, 1.31it/s] 90%|βββββββββ | 84/93 [00:52<00:06, 1.41it/s] 91%|ββββββββββ| 85/93 [00:53<00:05, 1.47it/s] 92%|ββββββββββ| 86/93 [00:53<00:04, 1.61it/s] 94%|ββββββββββ| 87/93 [00:54<00:03, 1.53it/s] 95%|ββββββββββ| 88/93 [00:55<00:03, 1.61it/s] 96%|ββββββββββ| 89/93 [00:55<00:02, 1.71it/s] 97%|ββββββββββ| 90/93 [00:56<00:01, 1.73it/s] 98%|ββββββββββ| 91/93 [00:56<00:01, 1.67it/s] 99%|ββββββββββ| 92/93 [00:57<00:00, 1.73it/s] 100%|ββββββββββ| 93/93 [00:57<00:00, 1.82it/s] 100%|ββββββββββ| 93/93 [00:58<00:00, 1.60it/s] | |
| ***** predict_test_vi_VN metrics ***** | |
| predict_ex_match_acc = 0.6557 | |
| predict_ex_match_acc_stderr = 0.0087 | |
| predict_intent_acc = 0.8608 | |
| predict_intent_acc_stderr = 0.0063 | |
| predict_loss = 0.13 | |
| predict_runtime = 0:00:58.58 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 50.767 | |
| predict_slot_micro_f1 = 0.7441 | |
| predict_slot_micro_f1_stderr = 0.0027 | |
| predict_steps_per_second = 1.588 | |
| 06/10/2024 22:45:29 - INFO - __main__ - *** test_ar_SA *** | |
| [INFO|trainer.py:718] 2024-06-10 22:45:29,940 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:45:29,942 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:45:29,943 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:45:29,943 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:16, 5.41it/s] 3%|β | 3/93 [00:00<00:24, 3.74it/s] 4%|β | 4/93 [00:01<00:25, 3.47it/s] 5%|β | 5/93 [00:01<00:30, 2.85it/s] 6%|β | 6/93 [00:01<00:30, 2.87it/s] 8%|β | 7/93 [00:02<00:30, 2.81it/s] 9%|β | 8/93 [00:02<00:30, 2.79it/s] 10%|β | 9/93 [00:03<00:33, 2.49it/s] 11%|β | 10/93 [00:03<00:33, 2.49it/s] 12%|ββ | 11/93 [00:03<00:33, 2.42it/s] 13%|ββ | 12/93 [00:04<00:32, 2.51it/s] 14%|ββ | 13/93 [00:04<00:32, 2.45it/s] 15%|ββ | 14/93 [00:05<00:36, 2.18it/s] 16%|ββ | 15/93 [00:05<00:36, 2.16it/s] 17%|ββ | 16/93 [00:06<00:34, 2.22it/s] 18%|ββ | 17/93 [00:06<00:33, 2.25it/s] 19%|ββ | 18/93 [00:07<00:33, 2.22it/s] 20%|ββ | 19/93 [00:07<00:33, 2.21it/s] 22%|βββ | 20/93 [00:07<00:30, 2.37it/s] 23%|βββ | 21/93 [00:08<00:29, 2.45it/s] 24%|βββ | 22/93 [00:08<00:29, 2.41it/s] 25%|βββ | 23/93 [00:09<00:29, 2.41it/s] 26%|βββ | 24/93 [00:09<00:29, 2.34it/s] 27%|βββ | 25/93 [00:09<00:26, 2.54it/s] 28%|βββ | 26/93 [00:10<00:26, 2.57it/s] 29%|βββ | 27/93 [00:10<00:24, 2.65it/s] 30%|βββ | 28/93 [00:10<00:23, 2.74it/s] 31%|βββ | 29/93 [00:11<00:24, 2.63it/s] 32%|ββββ | 30/93 [00:11<00:24, 2.61it/s] 33%|ββββ | 31/93 [00:12<00:24, 2.54it/s] 34%|ββββ | 32/93 [00:12<00:24, 2.52it/s] 35%|ββββ | 33/93 [00:13<00:26, 2.31it/s] 37%|ββββ | 34/93 [00:13<00:24, 2.41it/s] 38%|ββββ | 35/93 [00:13<00:23, 2.43it/s] 39%|ββββ | 36/93 [00:14<00:22, 2.58it/s] 40%|ββββ | 37/93 [00:14<00:20, 2.70it/s] 41%|ββββ | 38/93 [00:14<00:21, 2.60it/s] 42%|βββββ | 39/93 [00:15<00:19, 2.80it/s] 43%|βββββ | 40/93 [00:15<00:20, 2.62it/s] 44%|βββββ | 41/93 [00:16<00:20, 2.54it/s] 45%|βββββ | 42/93 [00:16<00:20, 2.44it/s] 46%|βββββ | 43/93 [00:17<00:22, 2.20it/s] 47%|βββββ | 44/93 [00:17<00:20, 2.38it/s] 48%|βββββ | 45/93 [00:17<00:18, 2.55it/s] 49%|βββββ | 46/93 [00:18<00:18, 2.53it/s] 51%|βββββ | 47/93 [00:18<00:18, 2.43it/s] 52%|ββββββ | 48/93 [00:18<00:17, 2.59it/s] 53%|ββββββ | 49/93 [00:19<00:16, 2.74it/s] 54%|ββββββ | 50/93 [00:19<00:17, 2.50it/s] 55%|ββββββ | 51/93 [00:20<00:17, 2.38it/s] 56%|ββββββ | 52/93 [00:20<00:18, 2.23it/s] 57%|ββββββ | 53/93 [00:21<00:20, 1.98it/s] 58%|ββββββ | 54/93 [00:21<00:19, 2.03it/s] 59%|ββββββ | 55/93 [00:22<00:17, 2.17it/s] 60%|ββββββ | 56/93 [00:22<00:16, 2.26it/s] 61%|βββββββ | 57/93 [00:23<00:16, 2.12it/s] 62%|βββββββ | 58/93 [00:23<00:15, 2.28it/s] 63%|βββββββ | 59/93 [00:23<00:14, 2.33it/s] 65%|βββββββ | 60/93 [00:24<00:14, 2.32it/s] 66%|βββββββ | 61/93 [00:24<00:12, 2.48it/s] 67%|βββββββ | 62/93 [00:25<00:13, 2.37it/s] 68%|βββββββ | 63/93 [00:25<00:12, 2.40it/s] 69%|βββββββ | 64/93 [00:27<00:25, 1.13it/s] 70%|βββββββ | 65/93 [00:28<00:21, 1.31it/s] 71%|βββββββ | 66/93 [00:28<00:18, 1.48it/s] 72%|ββββββββ | 67/93 [00:28<00:14, 1.75it/s] 73%|ββββββββ | 68/93 [00:29<00:13, 1.82it/s] 74%|ββββββββ | 69/93 [00:29<00:12, 2.00it/s] 75%|ββββββββ | 70/93 [00:30<00:10, 2.19it/s] 76%|ββββββββ | 71/93 [00:30<00:09, 2.30it/s] 77%|ββββββββ | 72/93 [00:31<00:09, 2.16it/s] 78%|ββββββββ | 73/93 [00:31<00:08, 2.35it/s] 80%|ββββββββ | 74/93 [00:31<00:08, 2.28it/s] 81%|ββββββββ | 75/93 [00:32<00:07, 2.39it/s] 82%|βββββββββ | 76/93 [00:32<00:07, 2.33it/s] 83%|βββββββββ | 77/93 [00:33<00:06, 2.32it/s] 84%|βββββββββ | 78/93 [00:33<00:06, 2.30it/s] 85%|βββββββββ | 79/93 [00:34<00:06, 2.03it/s] 86%|βββββββββ | 80/93 [00:34<00:06, 2.01it/s] 87%|βββββββββ | 81/93 [00:35<00:05, 2.04it/s] 88%|βββββββββ | 82/93 [00:35<00:04, 2.23it/s] 89%|βββββββββ | 83/93 [00:35<00:04, 2.22it/s] 90%|βββββββββ | 84/93 [00:36<00:04, 2.16it/s] 91%|ββββββββββ| 85/93 [00:36<00:03, 2.29it/s] 92%|ββββββββββ| 86/93 [00:37<00:02, 2.35it/s] 94%|ββββββββββ| 87/93 [00:37<00:02, 2.41it/s] 95%|ββββββββββ| 88/93 [00:38<00:02, 2.42it/s] 96%|ββββββββββ| 89/93 [00:38<00:01, 2.36it/s] 97%|ββββββββββ| 90/93 [00:38<00:01, 2.39it/s] 98%|ββββββββββ| 91/93 [00:39<00:00, 2.25it/s] 99%|ββββββββββ| 92/93 [00:39<00:00, 2.28it/s] 100%|ββββββββββ| 93/93 [00:40<00:00, 2.31it/s] 100%|ββββββββββ| 93/93 [00:40<00:00, 2.30it/s] | |
| ***** predict_test_ar_SA metrics ***** | |
| predict_ex_match_acc = 0.6422 | |
| predict_ex_match_acc_stderr = 0.0088 | |
| predict_intent_acc = 0.8255 | |
| predict_intent_acc_stderr = 0.007 | |
| predict_loss = 0.1855 | |
| predict_runtime = 0:00:40.74 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 72.983 | |
| predict_slot_micro_f1 = 0.7601 | |
| predict_slot_micro_f1_stderr = 0.0034 | |
| predict_steps_per_second = 2.282 | |
| 06/10/2024 22:46:10 - INFO - __main__ - *** test_ko_KR *** | |
| [INFO|trainer.py:718] 2024-06-10 22:46:10,882 >> The following columns in the test set don't have a corresponding argument in `MT5ForConditionalGeneration.forward` and have been ignored: intent_str, annot_utt, locale, id. If intent_str, annot_utt, locale, id are not expected by `MT5ForConditionalGeneration.forward`, you can safely ignore this message. | |
| [INFO|trainer.py:3199] 2024-06-10 22:46:10,885 >> ***** Running Prediction ***** | |
| [INFO|trainer.py:3201] 2024-06-10 22:46:10,886 >> Num examples = 2974 | |
| [INFO|trainer.py:3204] 2024-06-10 22:46:10,886 >> Batch size = 32 | |
| 0%| | 0/93 [00:00<?, ?it/s] 2%|β | 2/93 [00:00<00:14, 6.13it/s] 3%|β | 3/93 [00:00<00:21, 4.23it/s] 4%|β | 4/93 [00:01<00:24, 3.56it/s] 5%|β | 5/93 [00:01<00:30, 2.87it/s] 6%|β | 6/93 [00:01<00:29, 2.96it/s] 8%|β | 7/93 [00:02<00:29, 2.87it/s] 9%|β | 8/93 [00:02<00:29, 2.89it/s] 10%|β | 9/93 [00:02<00:29, 2.87it/s] 11%|β | 10/93 [00:03<00:29, 2.80it/s] 12%|ββ | 11/93 [00:03<00:29, 2.75it/s] 13%|ββ | 12/93 [00:03<00:28, 2.80it/s] 14%|ββ | 13/93 [00:04<00:29, 2.74it/s] 15%|ββ | 14/93 [00:04<00:30, 2.58it/s] 16%|ββ | 15/93 [00:05<00:30, 2.60it/s] 17%|ββ | 16/93 [00:05<00:28, 2.66it/s] 18%|ββ | 17/93 [00:06<00:31, 2.45it/s] 19%|ββ | 18/93 [00:06<00:29, 2.56it/s] 20%|ββ | 19/93 [00:06<00:29, 2.53it/s] 22%|βββ | 20/93 [00:07<00:28, 2.59it/s] 23%|βββ | 21/93 [00:07<00:26, 2.71it/s] 24%|βββ | 22/93 [00:07<00:28, 2.45it/s] 25%|βββ | 23/93 [00:08<00:28, 2.43it/s] 26%|βββ | 24/93 [00:08<00:27, 2.52it/s] 27%|βββ | 25/93 [00:09<00:27, 2.50it/s] 28%|βββ | 26/93 [00:09<00:27, 2.46it/s] 29%|βββ | 27/93 [00:09<00:25, 2.60it/s] 30%|βββ | 28/93 [00:10<00:23, 2.73it/s] 31%|βββ | 29/93 [00:10<00:23, 2.76it/s] 32%|ββββ | 30/93 [00:11<00:23, 2.64it/s] 33%|ββββ | 31/93 [00:11<00:28, 2.21it/s] 34%|ββββ | 32/93 [00:11<00:25, 2.42it/s] 35%|ββββ | 33/93 [00:12<00:24, 2.48it/s] 37%|ββββ | 34/93 [00:12<00:22, 2.63it/s] 38%|ββββ | 35/93 [00:13<00:21, 2.68it/s] 39%|ββββ | 36/93 [00:13<00:19, 2.87it/s] 40%|ββββ | 37/93 [00:13<00:18, 2.95it/s] 41%|ββββ | 38/93 [00:13<00:19, 2.87it/s] 42%|βββββ | 39/93 [00:14<00:17, 3.02it/s] 43%|βββββ | 40/93 [00:14<00:17, 2.96it/s] 44%|βββββ | 41/93 [00:14<00:17, 2.99it/s] 45%|βββββ | 42/93 [00:15<00:18, 2.69it/s] 46%|βββββ | 43/93 [00:15<00:19, 2.58it/s] 47%|βββββ | 44/93 [00:16<00:19, 2.55it/s] 48%|βββββ | 45/93 [00:16<00:17, 2.71it/s] 49%|βββββ | 46/93 [00:16<00:16, 2.80it/s] 51%|βββββ | 47/93 [00:17<00:17, 2.63it/s] 52%|ββββββ | 48/93 [00:17<00:16, 2.75it/s] 53%|ββββββ | 49/93 [00:17<00:15, 2.91it/s] 54%|ββββββ | 50/93 [00:18<00:15, 2.85it/s] 55%|ββββββ | 51/93 [00:18<00:15, 2.79it/s] 56%|ββββββ | 52/93 [00:19<00:15, 2.65it/s] 57%|ββββββ | 53/93 [00:19<00:15, 2.60it/s] 58%|ββββββ | 54/93 [00:19<00:14, 2.62it/s] 59%|ββββββ | 55/93 [00:20<00:13, 2.73it/s] 60%|ββββββ | 56/93 [00:20<00:13, 2.83it/s] 61%|βββββββ | 57/93 [00:20<00:12, 2.92it/s] 62%|βββββββ | 58/93 [00:21<00:11, 2.94it/s] 63%|βββββββ | 59/93 [00:21<00:11, 3.00it/s] 65%|βββββββ | 60/93 [00:21<00:10, 3.05it/s] 66%|βββββββ | 61/93 [00:22<00:10, 3.09it/s] 67%|βββββββ | 62/93 [00:22<00:10, 2.82it/s] 68%|βββββββ | 63/93 [00:22<00:10, 2.87it/s] 69%|βββββββ | 64/93 [00:23<00:12, 2.36it/s] 70%|βββββββ | 65/93 [00:23<00:11, 2.51it/s] 71%|βββββββ | 66/93 [00:24<00:11, 2.42it/s] 72%|ββββββββ | 67/93 [00:24<00:10, 2.47it/s] 73%|ββββββββ | 68/93 [00:25<00:10, 2.48it/s] 74%|ββββββββ | 69/93 [00:25<00:09, 2.47it/s] 75%|ββββββββ | 70/93 [00:25<00:09, 2.49it/s] 76%|ββββββββ | 71/93 [00:26<00:08, 2.67it/s] 77%|ββββββββ | 72/93 [00:26<00:08, 2.55it/s] 78%|ββββββββ | 73/93 [00:26<00:07, 2.74it/s] 80%|ββββββββ | 74/93 [00:27<00:07, 2.57it/s] 81%|ββββββββ | 75/93 [00:27<00:06, 2.79it/s] 82%|βββββββββ | 76/93 [00:28<00:06, 2.55it/s] 83%|βββββββββ | 77/93 [00:28<00:06, 2.66it/s] 84%|βββββββββ | 78/93 [00:28<00:05, 2.70it/s] 85%|βββββββββ | 79/93 [00:29<00:06, 2.27it/s] 86%|βββββββββ | 80/93 [00:29<00:05, 2.20it/s] 87%|βββββββββ | 81/93 [00:30<00:05, 2.32it/s] 88%|βββββββββ | 82/93 [00:30<00:04, 2.46it/s] 89%|βββββββββ | 83/93 [00:31<00:03, 2.52it/s] 90%|βββββββββ | 84/93 [00:31<00:03, 2.34it/s] 91%|ββββββββββ| 85/93 [00:31<00:03, 2.46it/s] 92%|ββββββββββ| 86/93 [00:32<00:02, 2.60it/s] 94%|ββββββββββ| 87/93 [00:32<00:02, 2.67it/s] 95%|ββββββββββ| 88/93 [00:32<00:01, 2.74it/s] 96%|ββββββββββ| 89/93 [00:33<00:01, 2.65it/s] 97%|ββββββββββ| 90/93 [00:33<00:01, 2.62it/s] 98%|ββββββββββ| 91/93 [00:34<00:00, 2.39it/s] 99%|ββββββββββ| 92/93 [00:34<00:00, 2.37it/s] 100%|ββββββββββ| 93/93 [00:34<00:00, 2.50it/s] 100%|ββββββββββ| 93/93 [00:35<00:00, 2.64it/s] | |
| ***** predict_test_ko_KR metrics ***** | |
| predict_ex_match_acc = 0.6967 | |
| predict_ex_match_acc_stderr = 0.0084 | |
| predict_intent_acc = 0.8642 | |
| predict_intent_acc_stderr = 0.0063 | |
| predict_loss = 0.1606 | |
| predict_runtime = 0:00:35.57 | |
| predict_samples = 2974 | |
| predict_samples_per_second = 83.608 | |
| predict_slot_micro_f1 = 0.8051 | |
| predict_slot_micro_f1_stderr = 0.0033 | |
| predict_steps_per_second = 2.614 | |