---
license: apache-2.0
datasets:
- BianYx/VAP-Data
language:
- en
base_model:
- zai-org/CogVideoX-5b-I2V
pipeline_tag: image-to-video
library_name: diffusers
---
# Video-As-Prompt: Unified Semantic Control for Video Generation
## 🔥 News
- Oct 24, 2025: 📖 We release the first unified semantic video generation model, [Video-As-Prompt (VAP)](https://github.com/bytedance/Video-As-Prompt)!
- Oct 24, 2025: 🤗 We release the [VAP-Data](https://huggingface.co/datasets/BianYx/VAP-Data), the largest semantic-controlled video generation datasets with more than $100K$ samples!
- Oct 24, 2025: 👋 We present the [technical report](https://arxiv.org/pdf/2510.20888) of Video-As-Prompt, please check out the details and spark some discussion!
## 🖌️ **Video-As-Prompt**
> **Core idea:** Given a reference video with wanted semantics as a video prompt, Video-As-Prompt animate a reference image with the same semantics as the reference video.
E.g., Different Reference Videos + Same Reference Image → New Videos with Different Semantics
> **Welcome to see our [project page](https://bytedance.github.io/Video-As-Prompt) for more interesting results!**
## 🎁 Models Zoo
To demonstrate cross-architecture generality, **Video-As-Prompt** provides two variants, each with distinct trade-offs:
* **`CogVideoX-I2V-5B`**
* **Strengths:** Fewer backbone parameters let us train more steps under limited resources, yielding strong stability on most semantic conditions.
* **Limitations:** Due to backbone ability limitation, it is weaker on human-centric generation and on concepts underrepresented in pretraining (e.g., *ladudu*, *Squid Game*, *Minecraft*).
* **`Wan2.1-I2V-14B`**
* **Strengths:** Strong performance on human actions and novel concepts, thanks to a more capable base model.
* **Limitations:** Larger model size reduced feasible training steps given our resources, lowering stability on some semantic conditions.
> 👏👏👏 Contributions and further optimization from the community are welcome.
| Model | Date | Size | Huggingface |
|----------------------------|------------|------|-------------------------------------------------------------------------------------------|
| Video-As-Prompt (CogVideoX-I2V-5B) | 2025-10-15 | 5B (Pretrained DiT) + 5B (VAP) | [Download](https://huggingface.co/ByteDance/Video-As-Prompt-CogVideoX-5B) |
| Video-As-Prompt (Wan2.1-I2V-14B) | 2025-10-15 | 14B (Pretrained DiT) + 5B (VAP) | [Download](https://huggingface.co/ByteDance/Video-As-Prompt-Wan2.1-14B) |
Please download the pre-trained video DiTs and our corresponding Video-As-Prompt models, and structure them as follows
```
ckpts/
├── Video-As-Prompt-CogVideoX-5B/
├── scheduler
├── vae
├── transformer
├── ...
├── Video-As-Prompt-Wan2.1-14B/
├── scheduler
├── vae
├── transformer
├── ...
```
## 🤗 Get Started with Video-As-Prompt
Video-As-Prompt supports Macos, Windows, Linux. You may follow the next steps to use Video-As-Prompt via:
### Install Requirements
We test our model with Python 3.10 and PyTorch 2.7.1+cu124.
```bash
conda create -n video_as_prompt python=3.10 -y
conda activate video_as_prompt
pip install -r requirements.txt
pip install -e ./diffusers
conda install -c conda-forge ffmpeg -y
```
### Data
We have published the VAP-Data dataset used in our paper on [VAP-Data](https://huggingface.co/datasets/BianYx/VAP-Data). Please download it and put it in the `data` folder. The structure should look like:
```
data/
├── VAP-Data/
│ ├── vfx_videos/
│ ├── vfx_videos_hq/
│ ├── vfx_videos_hq_camera/
│ ├── benchmark/benchmark.csv
│ ├── vap_data.csv
```
### Code Usage
We mainly implement our code based on [diffusers](https://github.com/huggingface/diffusers) and [finetrainers](https://github.com/huggingface/finetrainers) for their modular design.
#### Minimal Demo
Below is a minimal demo of our CogVideoX-I2V-5B variant. The full code can be found in [infer/cog_vap.py](infer/cog_vap.py). The WAN2.1-I2V-14B variant is similar and can be found in [infer/wan_vap.py](infer/wan_vap.py).
```python
import torch
from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXImageToVideoMOTPipeline,
CogVideoXTransformer3DMOTModel,
)
from diffusers.utils import export_to_video, load_video
from PIL import Image
vae = AutoencoderKLCogVideoX.from_pretrained("ByteDance/Video-As-Prompt-CogVideoX-5B", subfolder="vae", torch_dtype=torch.bfloat16)
transformer = CogVideoXTransformer3DMOTModel.from_pretrained("ByteDance/Video-As-Prompt-CogVideoX-5B", torch_dtype=torch.bfloat16)
pipe = CogVideoXImageToVideoMOTPipeline.from_pretrained(
"ByteDance/Video-As-Prompt-CogVideoX-5B", vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
).to("cuda")
ref_video = load_video("assets/videos/demo/object-725.mp4")
image = Image.open("assets/images/demo/animal-2.jpg").convert("RGB")
idx = torch.linspace(0, len(ref_video) - 1, 49).long().tolist()
ref_frames = [ref_video[i] for i in idx]
output_frames = pipe(
image=image,
ref_videos=[ref_frames],
prompt="A chestnut-colored horse stands on a grassy hill against a backdrop of distant, snow-dusted mountains. The horse begins to inflate, its defined, muscular body swelling and rounding into a smooth, balloon-like form while retaining its rich, brown hide color. Without changing its orientation, the now-buoyant horse lifts silently from the ground. It begins a steady vertical ascent, rising straight up and eventually floating out of the top of the frame. The camera remains completely static throughout the entire sequence, holding a fixed shot on the landscape as the horse transforms and departs, ensuring the verdant hill and mountain range in the background stay perfectly still.",
prompt_mot_ref=[
"A hand holds up a single beige sneaker decorated with gold calligraphy and floral illustrations, with small green plants tucked inside. The sneaker immediately begins to inflate like a balloon, its shape distorting as the decorative details stretch and warp across the expanding surface. It rapidly transforms into a perfectly smooth, matte beige sphere, inheriting the primary color from the original shoe. Once the transformation is complete, the new balloon-like object quickly ascends, moving straight up and exiting the top of the frame. The camera remains completely static and the plain white background is unchanged throughout the entire sequence."
],
height=480,
width=720,
num_frames=49,
frames_selection="evenly",
use_dynamic_cfg=True,
).frames[0]
```
#### Benchmark Inference
You can alse refer the following code for benchmark inference. Then you can use [Vbench](https://github.com/Vchitect/VBench) to evaluate the results.
```python
python infer/cog_vap_bench.py
python infer/wan_vap_bench.py
```
> Welcome to modify the scripts to see more results in our dataset VAP-Data and even in-the-wild reference videos or images.
#### Training
Pick a recipe, then run the corresponding script. Each script sets sensible defaults; override as needed.
**Recipes — CogVideoX-I2V-5B**
| Goal | Nodes | Objective | References / sample | Script |
| ----------------------- | ----- | --------- | ------------------- | ------------------------------------------------------------------- |
| Standard SFT | 1 | SFT | 1 | `examples/training/sft/cogvideox/vap_mot/train_single_node.sh` |
| Standard SFT | ≥2 | SFT | 1 | `examples/training/sft/cogvideox/vap_mot/train_multi_node.sh` |
| Preference optimization | 1 | DPO | 1 | `examples/training/sft/cogvideox/vap_mot/train_single_node_dpo.sh` |
| Preference optimization | ≥2 | DPO | 1 | `examples/training/sft/cogvideox/vap_mot/train_multi_node_dpo.sh` |
| Multi-reference SFT | 1 | SFT | ≤3 | `examples/training/sft/cogvideox/vap_mot/train_single_node_3ref.sh` |
> DPO and multi-reference SFT are just our exploration. We provide the code for boost of the community research.
**Recipes — Wan2.1-I2V-14B (SFT only)**
| Goal | Nodes | Objective | References / sample | Script |
| ------------ | ----- | --------- | ------------------- | -------------------------------------------------------- |
| Standard SFT | 1 | SFT | 1 | `examples/training/sft/wan/vap_mot/train_single_node.sh` |
| Standard SFT | ≥2 | SFT | 1 | `examples/training/sft/wan/vap_mot/train_multi_node.sh` |
**Quick start (CogVideoX-5B, single-node SFT)**
```bash
bash examples/training/sft/cogvideox/vap_mot/train_single_node.sh
```
**Quick start (Wan2.1-14B, single-node SFT)**
```bash
bash examples/training/sft/wan/vap_mot/train_single_node.sh
```
**Multi-node launch (example)**
```bash
# 6 nodes
bash examples/training/sft/cogvideox/vap_mot/train_multi_node.sh xxx:xxx:xxx:xxx:xxx(MASTER_ADDR) 0
bash examples/training/sft/cogvideox/vap_mot/train_multi_node.sh xxx:xxx:xxx:xxx:xxx(MASTER_ADDR) 1
...
bash examples/training/sft/cogvideox/vap_mot/train_multi_node.sh xxx:xxx:xxx:xxx:xxx(MASTER_ADDR) 5
# or for Wan:
# examples/training/sft/wan/vap_mot/train_multi_node.sh xxx:xxx:xxx:xxx:xxx(MASTER_ADDR) 0
# examples/training/sft/wan/vap_mot/train_multi_node.sh xxx:xxx:xxx:xxx:xxx(MASTER_ADDR) 1
...
# examples/training/sft/wan/vap_mot/train_multi_node.sh xxx:xxx:xxx:xxx:xxx(MASTER_ADDR) 5
```
**Notes**
* CogVideoX supports SFT, DPO, and a ≤3-reference SFT variant; Wan currently supports **standard SFT only**.
* All scripts read shared config (datasets, output dir, batch size, etc.); edit the script to override.
* Please edit `train_multi_node*.sh` base on your environment if you want to change the distributed settings (e.g., gpu num, node num, master addr/port, etc.).
## 🔗 BibTeX
❤️ If you found this repository helpful, please give us a star and cite our report:
```bibtex
@article{bian2025videoasprompt,
title = {Video-As-Prompt: Unified Semantic Control for Video Generation},
author = {Yuxuan Bian and Xin Chen and Zenan Li and Tiancheng Zhi and Shen Sang and Linjie Luo and Qiang Xu},
journal = {arXiv preprint arXiv:2510.20888},
year = {2025},
url = {https://arxiv.org/abs/2510.20888}
}
```
## Acknowledgements
We would like to thank the contributors to the [Finetrainers](https://github.com/huggingface/finetrainers), [Diffusers](https://github.com/huggingface/diffusers), [CogVideoX](https://github.com/zai-org/CogVideo), and [Wan](https://github.com/Wan-Video/Wan2.1) repositories, for their open research and exploration.