--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: temp_model_output_dir results: [] --- # temp_model_output_dir This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7204 - Precision: 0.8552 - Recall: 0.8448 - F1: 0.8399 - Accuracy: 0.8448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.8e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.209 | 1.0 | 756 | 0.7528 | 0.8238 | 0.8130 | 0.8013 | 0.8130 | | 0.7337 | 2.0 | 1512 | 0.7899 | 0.8209 | 0.8031 | 0.7952 | 0.8031 | | 0.644 | 3.0 | 2268 | 0.7417 | 0.8394 | 0.8299 | 0.8238 | 0.8299 | | 0.4777 | 4.0 | 3024 | 0.7204 | 0.8552 | 0.8448 | 0.8399 | 0.8448 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0