File size: 3,716 Bytes
f13020e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b98f693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f13020e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
language:
- ar
base_model:
- aubmindlab/bert-base-arabertv02
pipeline_tag: token-classification
---

# SWEET<sub>NoPnx</sub> ZAEBUC Model

## Model Description
`CAMeL-Lab/text-editing-zaebuc-pnx` is a text editing model tailored for grammatical error correction (GEC) in Modern Standard Arabic (MSA).
The model is based on [AraBERTv02](https://huggingface.co/aubmindlab/bert-base-arabertv02), which we fine-tuned using the [ZAEBUC](https://sites.google.com/view/zaebuc/home) dataset.
This model was introduced in our ACL 2025 paper, [Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study](https://arxiv.org/abs/2503.00985), where we refer to it as SWEET (Subword Edit Error Tagger).

The model was fine-tuned to fix non-punctuation (i.e., NoPnx) errors. Details about the training procedure, data preprocessing, and hyperparameters are available in the paper.
The fine-tuning code and associated resources are publicly available on our GitHub repository: https://github.com/CAMeL-Lab/text-editing.


## Intended uses
To use the `CAMeL-Lab/text-editing-zaebuc-nopnx` model, you must clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements.
We used this SWEET<sub>NoPnx</sub> model to report results on the ZAEBUC dev and test sets in our [paper](https://arxiv.org/abs/2503.00985).
This model is intended to be used with SWEET<sub>Pnx</sub> ([`CAMeL-Lab/text-editing-zaebuc-pnx`](https://huggingface.co/CAMeL-Lab/text-editing-zaebuc-pnx)) model.

## How to use
Clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements

```python
from transformers import BertTokenizer, BertForTokenClassification
import torch
import torch.nn.functional as F
from gec.tag import rewrite


nopnx_tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-zaebuc-nopnx')
nopnx_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-zaebuc-nopnx')

pnx_tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-zaebuc-pnx')
pnx_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-zaebuc-pnx')


def predict(model, tokenizer, text, decode_iter=1):
    for _ in range(decode_iter):
        tokenized_text = tokenizer(text, return_tensors="pt", is_split_into_words=True)
        with torch.no_grad():
            logits = model(**tokenized_text).logits
            preds = F.softmax(logits.squeeze(), dim=-1)
            preds = torch.argmax(preds, dim=-1).cpu().numpy()
            edits = [model.config.id2label[p] for p in preds[1:-1]]
            
            assert len(edits) == len(tokenized_text['input_ids'][0][1:-1])
        subwords = tokenizer.convert_ids_to_tokens(tokenized_text['input_ids'][0][1:-1])
        text = rewrite(subwords=[subwords], edits=[edits])[0][0]
    return text


text = 'يجب الإهتمام ب الصحه و لا سيما ف ي الصحه النفسيه ياشباب المستقبل،،'.split()

output_sent = predict(nopnx_model, nopnx_tokenizer, text, decode_iter=2)
output_sent = predict(pnx_model, pnx_tokenizer, output_sent.split(), decode_iter=1)
print(output_sent) # يجب الاهتمام بالصحة ولا سيما في الصحة النفسية يا شباب المستقبل .

```


## Citation
```bibtex
@inter{alhafni-habash-2025-enhancing,
      title={Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study}, 
      author={Bashar Alhafni and Nizar Habash},
      year={2025},
      eprint={2503.00985},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2503.00985}, 
}
```