File size: 3,716 Bytes
f13020e b98f693 f13020e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: mit
language:
- ar
base_model:
- aubmindlab/bert-base-arabertv02
pipeline_tag: token-classification
---
# SWEET<sub>NoPnx</sub> ZAEBUC Model
## Model Description
`CAMeL-Lab/text-editing-zaebuc-pnx` is a text editing model tailored for grammatical error correction (GEC) in Modern Standard Arabic (MSA).
The model is based on [AraBERTv02](https://huggingface.co/aubmindlab/bert-base-arabertv02), which we fine-tuned using the [ZAEBUC](https://sites.google.com/view/zaebuc/home) dataset.
This model was introduced in our ACL 2025 paper, [Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study](https://arxiv.org/abs/2503.00985), where we refer to it as SWEET (Subword Edit Error Tagger).
The model was fine-tuned to fix non-punctuation (i.e., NoPnx) errors. Details about the training procedure, data preprocessing, and hyperparameters are available in the paper.
The fine-tuning code and associated resources are publicly available on our GitHub repository: https://github.com/CAMeL-Lab/text-editing.
## Intended uses
To use the `CAMeL-Lab/text-editing-zaebuc-nopnx` model, you must clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements.
We used this SWEET<sub>NoPnx</sub> model to report results on the ZAEBUC dev and test sets in our [paper](https://arxiv.org/abs/2503.00985).
This model is intended to be used with SWEET<sub>Pnx</sub> ([`CAMeL-Lab/text-editing-zaebuc-pnx`](https://huggingface.co/CAMeL-Lab/text-editing-zaebuc-pnx)) model.
## How to use
Clone our text editing [GitHub repository](https://github.com/CAMeL-Lab/text-editing) and follow the installation requirements
```python
from transformers import BertTokenizer, BertForTokenClassification
import torch
import torch.nn.functional as F
from gec.tag import rewrite
nopnx_tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-zaebuc-nopnx')
nopnx_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-zaebuc-nopnx')
pnx_tokenizer = BertTokenizer.from_pretrained('CAMeL-Lab/text-editing-zaebuc-pnx')
pnx_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/text-editing-zaebuc-pnx')
def predict(model, tokenizer, text, decode_iter=1):
for _ in range(decode_iter):
tokenized_text = tokenizer(text, return_tensors="pt", is_split_into_words=True)
with torch.no_grad():
logits = model(**tokenized_text).logits
preds = F.softmax(logits.squeeze(), dim=-1)
preds = torch.argmax(preds, dim=-1).cpu().numpy()
edits = [model.config.id2label[p] for p in preds[1:-1]]
assert len(edits) == len(tokenized_text['input_ids'][0][1:-1])
subwords = tokenizer.convert_ids_to_tokens(tokenized_text['input_ids'][0][1:-1])
text = rewrite(subwords=[subwords], edits=[edits])[0][0]
return text
text = 'يجب الإهتمام ب الصحه و لا سيما ف ي الصحه النفسيه ياشباب المستقبل،،'.split()
output_sent = predict(nopnx_model, nopnx_tokenizer, text, decode_iter=2)
output_sent = predict(pnx_model, pnx_tokenizer, output_sent.split(), decode_iter=1)
print(output_sent) # يجب الاهتمام بالصحة ولا سيما في الصحة النفسية يا شباب المستقبل .
```
## Citation
```bibtex
@inter{alhafni-habash-2025-enhancing,
title={Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study},
author={Bashar Alhafni and Nizar Habash},
year={2025},
eprint={2503.00985},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.00985},
}
```
|