File size: 4,473 Bytes
ebbf898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: cwe-parent-vulnerability-classification-distilbert-base-uncased
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cwe-parent-vulnerability-classification-distilbert-base-uncased

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3946
- Accuracy: 0.7416
- F1 Macro: 0.4136

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 3.2586        | 1.0   | 25   | 3.2817          | 0.0225   | 0.0037   |
| 3.1726        | 2.0   | 50   | 3.2811          | 0.0225   | 0.0037   |
| 3.1195        | 3.0   | 75   | 3.2705          | 0.0225   | 0.0037   |
| 3.0213        | 4.0   | 100  | 3.2327          | 0.0449   | 0.0325   |
| 3.0235        | 5.0   | 125  | 3.2046          | 0.2247   | 0.0830   |
| 2.931         | 6.0   | 150  | 3.2138          | 0.2697   | 0.0725   |
| 2.9104        | 7.0   | 175  | 3.1642          | 0.4382   | 0.1117   |
| 2.779         | 8.0   | 200  | 3.1058          | 0.4831   | 0.1095   |
| 2.7528        | 9.0   | 225  | 3.0725          | 0.5169   | 0.1238   |
| 2.6453        | 10.0  | 250  | 3.0537          | 0.5730   | 0.2290   |
| 2.6262        | 11.0  | 275  | 3.0154          | 0.5618   | 0.2103   |
| 2.4852        | 12.0  | 300  | 2.9611          | 0.5955   | 0.3516   |
| 2.3778        | 13.0  | 325  | 2.9121          | 0.5955   | 0.3256   |
| 2.3381        | 14.0  | 350  | 2.8414          | 0.6067   | 0.3057   |
| 2.2415        | 15.0  | 375  | 2.8161          | 0.6180   | 0.3610   |
| 2.0991        | 16.0  | 400  | 2.7636          | 0.6180   | 0.3520   |
| 2.0469        | 17.0  | 425  | 2.7049          | 0.6180   | 0.3175   |
| 1.9623        | 18.0  | 450  | 2.7100          | 0.6404   | 0.3767   |
| 1.921         | 19.0  | 475  | 2.6304          | 0.6404   | 0.3320   |
| 1.8045        | 20.0  | 500  | 2.6552          | 0.6404   | 0.3130   |
| 1.7417        | 21.0  | 525  | 2.5960          | 0.6517   | 0.3082   |
| 1.7004        | 22.0  | 550  | 2.5777          | 0.6404   | 0.3183   |
| 1.6295        | 23.0  | 575  | 2.5849          | 0.6742   | 0.3602   |
| 1.5823        | 24.0  | 600  | 2.5379          | 0.6742   | 0.345    |
| 1.4711        | 25.0  | 625  | 2.5262          | 0.6742   | 0.3512   |
| 1.4868        | 26.0  | 650  | 2.4962          | 0.7079   | 0.3970   |
| 1.4563        | 27.0  | 675  | 2.4695          | 0.6854   | 0.3438   |
| 1.3601        | 28.0  | 700  | 2.4549          | 0.6854   | 0.3438   |
| 1.2847        | 29.0  | 725  | 2.4691          | 0.7079   | 0.3688   |
| 1.2883        | 30.0  | 750  | 2.4587          | 0.7079   | 0.3966   |
| 1.316         | 31.0  | 775  | 2.4454          | 0.7191   | 0.3623   |
| 1.1845        | 32.0  | 800  | 2.4432          | 0.7416   | 0.4111   |
| 1.24          | 33.0  | 825  | 2.4280          | 0.7079   | 0.3980   |
| 1.1163        | 34.0  | 850  | 2.4179          | 0.7416   | 0.3871   |
| 1.1728        | 35.0  | 875  | 2.4326          | 0.7528   | 0.4201   |
| 1.1013        | 36.0  | 900  | 2.4116          | 0.7416   | 0.4136   |
| 1.1612        | 37.0  | 925  | 2.3985          | 0.7416   | 0.4136   |
| 1.1472        | 38.0  | 950  | 2.3956          | 0.7416   | 0.4136   |
| 1.069         | 39.0  | 975  | 2.3946          | 0.7416   | 0.4136   |
| 1.0865        | 40.0  | 1000 | 2.3983          | 0.7528   | 0.4201   |


### Framework versions

- Transformers 4.55.4
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2