--- library_name: transformers base_model: microsoft/graphcodebert-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: vuln-patch-cwe-guesser-model-microsoft-graphcodebert-base results: [] --- # vuln-patch-cwe-guesser-model-microsoft-graphcodebert-base This model is a fine-tuned version of [microsoft/graphcodebert-base](https://huggingface.co/microsoft/graphcodebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.8276 - Accuracy: 0.35 - F1: 0.1264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 1 | 5.1591 | 0.0 | 0.0 | | No log | 2.0 | 2 | 5.0441 | 0.3 | 0.0985 | | No log | 3.0 | 3 | 4.9430 | 0.45 | 0.1833 | | No log | 4.0 | 4 | 4.8677 | 0.35 | 0.1264 | | No log | 5.0 | 5 | 4.8276 | 0.35 | 0.1264 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2