File size: 5,729 Bytes
2df812d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
'''
Author: Chris Xiao yl.xiao@mail.utoronto.ca
Date: 2023-09-30 16:14:13
LastEditors: Chris Xiao yl.xiao@mail.utoronto.ca
LastEditTime: 2023-12-17 01:50:37
FilePath: /EndoSAM/endoSAM/test.py
Description: fine-tune inference script
I Love IU
Copyright (c) 2023 by Chris Xiao yl.xiao@mail.utoronto.ca, All Rights Reserved. 
'''
import argparse
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
import os
from dataset import EndoVisDataset
from utils import make_if_dont_exist, one_hot_embedding_3d
import torch
from model import EndoSAMAdapter
import numpy as np
from segment_anything.build_sam import sam_model_registry
from loss import jaccard
import cv2
import json
import wget

COMMON_MODEL_LINKS={
    'default': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth',
    'vit_h': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth',
    'vit_l': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth',
    'vit_b': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth'
}


def parse_command():
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', default=None, type=str, help='path to config file')
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = parse_command()
    cfg_path = args.cfg
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    if cfg_path is not None:
        if os.path.exists(cfg_path):
            cfg = OmegaConf.load(cfg_path)
        else:
            raise FileNotFoundError(f'config file {cfg_path} not found')
    else:
        raise ValueError('config file not specified')

    if 'sam_model_dir' not in OmegaConf.to_container(cfg)['model'].keys() or OmegaConf.is_missing(cfg.model, 'sam_model_dir') or not os.path.exists(cfg.model.sam_model_dir):
        print("Didn't find SAM Checkpoint. Downloading from Facebook AI...")
        parent_dir = '/'.join(os.getcwd().split('/')[:-1])
        model_dir = os.path.join(parent_dir, 'sam_ckpts')
        make_if_dont_exist(model_dir, overwrite=True)
        checkpoint = os.path.join(model_dir, cfg.model.sam_model_type+'.pth')
        wget.download(COMMON_MODEL_LINKS[cfg.model.sam_model_type], checkpoint)
        OmegaConf.update(cfg, 'model.sam_model_dir', checkpoint)
        OmegaConf.save(cfg, cfg_path)

    exp = cfg.experiment_name
    root_dir = cfg.dataset.dataset_dir
    img_format = cfg.dataset.img_format
    ann_format = cfg.dataset.ann_format
    model_path = cfg.model_folder
    model_exp_path = os.path.join(model_path, exp)
    test_path = cfg.test_folder
    test_exp_path = os.path.join(test_path, exp)
    test_exp_mask_path = os.path.join(test_exp_path,'mask')
    test_exp_overlay_path = os.path.join(test_exp_path, 'overlay')
    
    make_if_dont_exist(test_exp_path)
    make_if_dont_exist(test_exp_mask_path)
    make_if_dont_exist(test_exp_overlay_path)
    
    test_dataset = EndoVisDataset(root_dir, ann_format=ann_format, img_format=img_format, mode='test', encoder_size=cfg.model.encoder_size)
    test_loader = DataLoader(test_dataset, batch_size=cfg.test_bs, shuffle=False, num_workers=cfg.num_workers)
    
    sam_mask_encoder, sam_prompt_encoder, sam_mask_decoder = sam_model_registry[cfg.model.sam_model_type](checkpoint=cfg.model.sam_model_dir,customized=cfg.model.sam_model_customized)
    model = EndoSAMAdapter(device, cfg.model.class_num, sam_mask_encoder, sam_prompt_encoder, sam_mask_decoder, num_token=cfg.num_token).to(device)
    weights = torch.load(os.path.join(model_exp_path,'model.pth'), map_location=device)['endosam_state_dict']
    model.load_state_dict(weights)
    
    model.eval()
    
    iou_dict = {}
    ious = []
    with torch.no_grad():
        for img, ann, name, img_bgr in test_loader:
            cv2.destroyAllWindows()
            img = img.to(device)
            ann = ann.to(device).unsqueeze(1).long()
            ann = one_hot_embedding_3d(ann, class_num=cfg.model.class_num)
            pred, pred_quality = model(img)
            mask_iou = np.nan
            if torch.unique(pred).size()[0] > 1:
                iou = jaccard(ann, pred)
                mask_iou = iou.item()
            iou_dict[name[0]] = mask_iou
            ious.append(mask_iou)
            pred = torch.argmax(pred, dim=1)
            numpy_pred = pred.squeeze(0).detach().cpu().numpy()
            numpy_pred[numpy_pred != 0] = 255
            img_bgr = img_bgr.squeeze(0).detach().cpu().numpy()
            # 将预测结果转换为三通道图像
            overlay = np.zeros_like(img_bgr)
            red_color = (0, 0, 255)  # 红色
            overlay[:,:,2][numpy_pred == 255] = 255
            # 将红色区域叠加在原图上
            alpha = 0.5  # 半透明度
            result = cv2.addWeighted(img_bgr, 1 - alpha, overlay, alpha, 0)
            cv2.imshow('Result', result)
            # 等待键盘输入(最多等待1秒)
            key = cv2.waitKey(1000)  # 超时时间为1000毫秒(1秒)
            # 判断是否有键盘输入
            if key == ord('q'):  # 如果用户按下 'q' 键
                cv2.destroyAllWindows()  # 关闭窗口
            else:
                # 继续执行其他操作
                pass
            cv2.imwrite(os.path.join(test_exp_mask_path, f'{name[0]}.png'), numpy_pred.astype(np.uint8))
            cv2.imwrite(os.path.join(test_exp_overlay_path, f'{name[0]}.png'), result)
            
    with open(os.path.join(test_exp_path, 'mask_ious.json'), 'w') as f:
        json.dump(iou_dict, f, indent=4, sort_keys=False)
    
    f.close()
    avg_iou = np.mean(ious, axis=0)
    print(f'average intersection over union of mask: {avg_iou}')