File size: 8,670 Bytes
2df812d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
'''
Author: Chris Xiao yl.xiao@mail.utoronto.ca
Date: 2023-09-16 19:47:31
LastEditors: Chris Xiao yl.xiao@mail.utoronto.ca
LastEditTime: 2023-12-15 13:27:37
FilePath: /EndoSAM/endoSAM/utils.py
Description: EndoSAM utilities functions
I Love IU
Copyright (c) 2023 by Chris Xiao yl.xiao@mail.utoronto.ca, All Rights Reserved.
'''
import os
import numpy as np
import shutil
import logging
from torch.nn import functional as F
import torch
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
from copy import deepcopy
import matplotlib.pyplot as plt
from typing import Tuple
import matplotlib
def plot_progress(logger, save_dir, train_loss, val_loss, name):
"""
Should probably by improved
:return:
"""
assert len(train_loss) != 0
train_loss = np.array(train_loss)
try:
font = {'weight': 'normal',
'size': 18}
matplotlib.rc('font', **font)
fig = plt.figure(figsize=(30, 24))
ax = fig.add_subplot(111)
ax.plot(train_loss[:,0], train_loss[:,1], color='b', ls='-', label="loss_tr")
if len(val_loss) != 0:
val_loss = np.array(val_loss)
ax.plot(val_loss[:, 0], val_loss[:, 1], color='r', ls='-', label="loss_val")
ax.set_xlabel("epoch")
ax.set_ylabel("loss")
ax.legend()
ax.set_title(name)
fig.savefig(os.path.join(save_dir, name + ".png"))
plt.cla()
plt.close(fig)
except:
logger.info(f"failed to plot {name} training progress")
def save_checkpoint(adapter_model, optimizer, epoch, best_val_loss, train_losses, val_losses, save_dir):
torch.save({
'epoch': epoch,
'best_val_loss': best_val_loss,
'train_losses': train_losses,
'val_losses': val_losses,
'weights': adapter_model.state_dict(),
'optimizer': optimizer.state_dict(),
}, save_dir)
def one_hot_embedding_3d(labels, dim=1, class_num=21):
'''
:param real_labels: B 1 H W
:param class_num: N
:return: B N H W
'''
one_hot_labels = labels.clone()
data_dim = list(one_hot_labels.shape)
if data_dim[dim] != 1:
raise AssertionError("labels should have a channel with length equal to one.")
data_dim[dim] = class_num
o = torch.zeros(size=data_dim, dtype=one_hot_labels.dtype, device=one_hot_labels.device)
return o.scatter_(dim, one_hot_labels, 1).contiguous().float()
def setup_logger(logger_name, log_file, level=logging.INFO):
log_setup = logging.getLogger(logger_name)
formatter = logging.Formatter('%(asctime)s %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
log_setup.setLevel(level)
log_setup.propagate = False
if not log_setup.handlers:
fileHandler = logging.FileHandler(log_file, mode='w')
fileHandler.setFormatter(formatter)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
log_setup.addHandler(fileHandler)
log_setup.addHandler(streamHandler)
return log_setup
def make_if_dont_exist(folder_path, overwrite=False):
if os.path.exists(folder_path):
if not overwrite:
print(f'{folder_path} exists, no overwrite here.')
else:
print(f"{folder_path} overwritten")
shutil.rmtree(folder_path, ignore_errors = True)
os.makedirs(folder_path)
else:
os.makedirs(folder_path)
print(f"{folder_path} created!")
# taken from sam.postprocess_masks of https://github.com/facebookresearch/segment-anything
def postprocess_masks(masks, input_size, original_size):
"""
Remove padding and upscale masks to the original image size.
Arguments:
masks (torch.Tensor): Batched masks from the mask_decoder,
in BxCxHxW format.
input_size (tuple(int, int)): The size of the image input to the
model, in (H, W) format. Used to remove padding.
original_size (tuple(int, int)): The original size of the image
before resizing for input to the model, in (H, W) format.
Returns:
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
is given by original_size.
"""
masks = F.interpolate(
masks,
(1024, 1024),
mode="bilinear",
align_corners=False,
)
masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
return masks
def preprocess(x: torch.Tensor, img_size: int) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
pixel_mean=[123.675, 116.28, 103.53]
pixel_std=[58.395, 57.12, 57.375]
pixel_mean = torch.Tensor(pixel_mean).view(-1, 1, 1)
pixel_std = torch.Tensor(pixel_std).view(-1, 1, 1)
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
class ResizeLongestSide:
"""
Resizes images to longest side 'target_length', as well as provides
methods for resizing coordinates and boxes. Provides methods for
transforming both numpy array and batched torch tensors.
"""
def __init__(self, target_length: int) -> None:
self.target_length = target_length
def apply_image(self, image: np.ndarray) -> np.ndarray:
"""
Expects a numpy array with shape HxWxC in uint8 format.
"""
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
return np.array(resize(to_pil_image(image), target_size))
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
"""
Expects a numpy array of length 2 in the final dimension. Requires the
original image size in (H, W) format.
"""
old_h, old_w = original_size
new_h, new_w = self.get_preprocess_shape(
original_size[0], original_size[1], self.target_length
)
coords = deepcopy(coords).astype(float)
coords[..., 0] = coords[..., 0] * (new_w / old_w)
coords[..., 1] = coords[..., 1] * (new_h / old_h)
return coords
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
"""
Expects a numpy array shape Bx4. Requires the original image size
in (H, W) format.
"""
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
return boxes.reshape(-1, 4)
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
"""
Expects batched images with shape BxCxHxW and float format. This
transformation may not exactly match apply_image. apply_image is
the transformation expected by the model.
"""
# Expects an image in BCHW format. May not exactly match apply_image.
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
return F.interpolate(
image, target_size, mode="bilinear", align_corners=False, antialias=True
)
def apply_coords_torch(
self, coords: torch.Tensor, original_size: Tuple[int, ...]
) -> torch.Tensor:
"""
Expects a torch tensor with length 2 in the last dimension. Requires the
original image size in (H, W) format.
"""
old_h, old_w = original_size
new_h, new_w = self.get_preprocess_shape(
original_size[0], original_size[1], self.target_length
)
coords = deepcopy(coords).to(torch.float)
coords[..., 0] = coords[..., 0] * (new_w / old_w)
coords[..., 1] = coords[..., 1] * (new_h / old_h)
return coords
def apply_boxes_torch(
self, boxes: torch.Tensor, original_size: Tuple[int, ...]
) -> torch.Tensor:
"""
Expects a torch tensor with shape Bx4. Requires the original image
size in (H, W) format.
"""
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
return boxes.reshape(-1, 4)
@staticmethod
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
"""
Compute the output size given input size and target long side length.
"""
scale = long_side_length * 1.0 / max(oldh, oldw)
newh, neww = oldh * scale, oldw * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return (newh, neww)
|