File size: 13,772 Bytes
043e8b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import argparse
import os
import torch
import numpy as np
from safetensors import safe_open
from safetensors.torch import save_file
from typing import Dict, Tuple
# --- Configuration ---
# Keys containing these substrings will not be quantized if --t5xxl is set
AVOID_KEY_NAMES = ["norm", "bias", "embed_tokens", "shared"] #T5XXL, may need to be changed for other TEs.
# Target FP8 format
TARGET_FP8_DTYPE = torch.float8_e4m3fn
# Intermediate dtype for calculations
COMPUTE_DTYPE = torch.float64 # Don't think more hurts here since we're working tensor by tensor.
# Dtype for storing scale factors
SCALE_DTYPE = torch.float64 # Might be overkill, float32 should do just fine, but since these are so tiny may as well :3
# --- End Configuration ---
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
mantissa_scaled = torch.where(
normal_mask,
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
)
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
#Not 100% sure about this
def manual_stochastic_round_to_float8(x, dtype, generator=None):
if dtype == torch.float8_e4m3fn:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
elif dtype == torch.float8_e5m2:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
else:
raise ValueError("Unsupported dtype")
x = x.half()
sign = torch.sign(x)
abs_x = x.abs()
sign = torch.where(abs_x == 0, 0, sign)
# Combine exponent calculation and clamping
exponent = torch.clamp(
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
0, 2**EXPONENT_BITS - 1
)
# Combine mantissa calculation and rounding
normal_mask = ~(exponent == 0)
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
sign *= torch.where(
normal_mask,
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
)
inf = torch.finfo(dtype)
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
return sign
def stochastic_rounding(value, dtype=TARGET_FP8_DTYPE, seed=0):
if dtype == torch.float32:
return value.to(dtype=torch.float32)
if dtype == torch.float16:
return value.to(dtype=torch.float16)
if dtype == torch.bfloat16:
return value.to(dtype=torch.bfloat16)
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
generator = torch.Generator(device=value.device)
generator.manual_seed(seed)
output = torch.empty_like(value, dtype=dtype)
num_slices = max(1, (value.numel() / (1536 * 1536)))
slice_size = max(1, round(value.shape[0] / num_slices))
for i in range(0, value.shape[0], slice_size):
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
#output.copy_(manual_stochastic_round_to_float8(value, dtype, generator=generator))
return output
return value.to(dtype=dtype)
def get_fp8_constants(fp8_dtype: torch.dtype) -> Tuple[float, float, float]:
"""Gets the min, max, and smallest positive normal value for a given FP8 dtype."""
finfo = torch.finfo(fp8_dtype)
# Smallest positive normal value approximation (may vary based on exact FP8 spec interpretation)
# For E4M3FN: exponent bias 7, smallest normal exp is -6. 1.0 * 2^-6 = 1/64
# Smallest subnormal is 2^-9 for E4M3FN from the paper. Let's use subnormal min.
# Find the smallest positive value representable (subnormal)
# This is tricky as finfo.tiny is often the smallest *normal*.
# Let's hardcode based on E4M3FN spec (S=0, E=0000, M=001) -> 2^-9
if fp8_dtype == torch.float8_e4m3fn:
fp8_min_pos = 2**-9 # Smallest subnormal for E4M3FN
elif fp8_dtype == torch.float8_e5m2:
# E5M2: exponent bias 15, smallest normal exp -14. Smallest subnormal 2^-16
fp8_min_pos = 2**-16 # Smallest subnormal for E5M2
else:
# Fallback using finfo.tiny (likely smallest normal)
fp8_min_pos = finfo.tiny * finfo.eps # A guess if unknown type
# Ensure min_pos is a Python float for consistency
fp8_min_pos = float(fp8_min_pos)
return float(finfo.min), float(finfo.max), fp8_min_pos
# Global FP8 constants
FP8_MIN, FP8_MAX, FP8_MIN_POS = get_fp8_constants(TARGET_FP8_DTYPE)
def convert_to_fp8_scaled(input_file: str, output_file: str, t5xxl: bool):
"""
Converts a safetensors file to a version with FP8 scaled weights using stochastic rounding.
For each tensor ending with '.weight' (unless excluded):
1. Calculates a scale factor based on the tensor's max absolute value.
2. Scales the tensor to fit within the FP8 range [-FP8_MAX, FP8_MAX].
3. Clamps the scaled tensor.
4. Applies stochastic rounding during quantization to TARGET_FP8_DTYPE.
5. Stores the quantized tensor.
6. Stores '.scale_weight' tensor: the factor to dequantize the weight (1.0 / scale_factor).
7. Stores '.scale_input' tensor: the factor to dequantize the input (using 1.0 / scale_factor as proxy).
"""
print(f"Processing: {input_file}")
print(f"Output will be saved to: {output_file}")
print(f"Using FP8 format: {TARGET_FP8_DTYPE}")
print(f"FP8 Range: [{FP8_MIN}, {FP8_MAX}], Min Pos Subnormal: {FP8_MIN_POS:.2e}")
print(f"Using Stochastic Rounding: True")
# Load the original model
tensors: Dict[str, torch.Tensor] = {}
try:
with safe_open(input_file, framework="pt", device="cpu") as f:
for key in f.keys():
# Load directly to CPU to avoid potential GPU OOM for large models
tensors[key] = f.get_tensor(key).cpu()
except Exception as e:
print(f"Error loading '{input_file}': {e}")
return
# Keep track of new/modified tensors
new_tensors: Dict[str, torch.Tensor] = {}
# Process each tensor ending with '.weight'
weight_keys = sorted([key for key in tensors.keys() if key.endswith('.weight')])
total_weights = len(weight_keys)
skipped_count = 0
processed_count = 0
print(f"Found {total_weights} weight tensors to potentially process.")
for i, key in enumerate(weight_keys):
process_this_key = True
if t5xxl:
for avoid_name in AVOID_KEY_NAMES:
if avoid_name in key:
print(f"({i+1}/{total_weights}) Skipping excluded tensor: {key}")
# Keep original tensor
new_tensors[key] = tensors[key]
process_this_key = False
skipped_count += 1
break # Stop checking avoid names for this key
if not process_this_key:
continue
print(f"({i+1}/{total_weights}) Processing tensor: {key}")
processed_count += 1
# Get the original tensor and convert to high precision for calculations
original_tensor = tensors[key].to(COMPUTE_DTYPE)
if original_tensor.numel() == 0:
print(f" - Skipping empty tensor: {key}")
new_tensors[key] = tensors[key].to(TARGET_FP8_DTYPE) # Store as empty FP8
# Add dummy scales
base_name = key[:-len('.weight')]
scale_weight_key = f"{base_name}.scale_weight"
dequant_scale = torch.tensor([1.0], dtype=SCALE_DTYPE)
new_tensors[scale_weight_key] = dequant_scale.detach().clone()
continue
# Calculate the scaling factor needed to map the max absolute value to FP8_MAX
abs_max = torch.max(torch.abs(original_tensor))
# Handle all-zero tensors or edge cases
if abs_max < 1e-12: # Use a small threshold instead of exact zero
print(f" - Tensor has near-zero max value ({abs_max.item():.2e}). Using scale factor 1.0.")
scale_factor = torch.tensor(1.0, dtype=COMPUTE_DTYPE)
scaled_tensor = original_tensor # No scaling needed
else:
# Ensure abs_max is positive before division
abs_max = abs_max.clamp(min=FP8_MIN_POS) # Clamp to smallest positive FP8 value
scale_factor = (FP8_MAX - FP8_MIN_POS) / abs_max
# Scale the tensor
scaled_tensor = original_tensor.mul(scale_factor)
# Clamp the scaled tensor to the representable FP8 range
#print(scale_factor)
clamped_tensor = torch.clamp(scaled_tensor, FP8_MIN, FP8_MAX)
# Perform stochastic rounding and quantization to FP8
quantized_fp8_tensor = stochastic_rounding(clamped_tensor)
# Store the quantized tensor
new_tensors[key] = quantized_fp8_tensor
# Calculate dequantization scale factor (inverse of the scaling factor)
dequant_scale = scale_factor.reciprocal()
# Create scale tensor keys
base_name = key[:-len('.weight')]
scale_weight_key = f"{base_name}.scale_weight"
# scale_input_key = f"{base_name}.scale_input" # scale_input Is not necessary, I think? Leaving this here as a cookie trail or smth if necessary in the future.
# Store scale tensors
new_tensors[scale_weight_key] = dequant_scale.detach().clone()
# --- Debug/Info Printing ---
print(f" - Abs Max : {abs_max.item():.5}")
print(f" - Scale Factor : {scale_factor.item():.5}")
print(f" - Dequant Scale : {dequant_scale.item():.5}")
# Combine original non-weight tensors with new/modified ones
added_scale_keys = set()
for key in new_tensors:
if key.endswith(".scale_weight") or key.endswith(".scale_input"):
added_scale_keys.add(key)
original_keys = set(tensors.keys())
processed_weight_keys = set(k for k, v in new_tensors.items() if k.endswith(".weight"))
for key, tensor in tensors.items():
# Add if it's not a weight tensor OR if it's a weight tensor that was skipped
is_weight = key.endswith(".weight")
if key not in new_tensors:
if not is_weight:
# Non-weight tensor, just copy it over
new_tensors[key] = tensor
print(f"(+) Adding original non-weight tensor: {key}")
# Add FP8 marker key for compatibility (e.g., ComfyUI)
new_tensors["scaled_fp8"] = torch.empty((2), dtype=TARGET_FP8_DTYPE) if not t5xxl else torch.empty((0), dtype=TARGET_FP8_DTYPE)
# Save the modified model
print("-" * 40)
print(f"Saving {len(new_tensors)} tensors to {output_file}")
try:
# Ensure parent directory exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
# Metadata can be useful
#metadata = {'format': f'pt_scaled_{TARGET_FP8_DTYPE.__str__().split(".")[-1]}'}
save_file(new_tensors, output_file)
print("Conversion complete!")
except Exception as e:
print(f"Error saving file '{output_file}': {e}")
return
# Print summary
final_tensor_count = len(new_tensors)
original_tensor_count = len(tensors)
added_tensors_count = final_tensor_count - original_tensor_count
added_scales_count = len(added_scale_keys)
print("-" * 40)
print(f"Summary:")
print(f" - Original tensor count : {original_tensor_count}")
print(f" - Weight tensors found : {total_weights}")
print(f" - Weights processed : {processed_count}")
print(f" - Weights skipped : {skipped_count}")
print(f" - Added scale tensors : {added_scales_count}") # Should be processed_count * 2 + skipped_count * 2
print(f" - Added marker tensor : 1")
print(f" - Final tensor count : {final_tensor_count}")
print("-" * 40)
def main():
parser = argparse.ArgumentParser(
description=f"Convert safetensors weights to Scaled {TARGET_FP8_DTYPE} format using stochastic rounding.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--input",
type=str,
required=True,
help="Input safetensors file path."
)
parser.add_argument(
"--output",
type=str,
help="Output safetensors file path. If not provided, generated based on input name."
)
parser.add_argument(
"--t5xxl",
action='store_true', # Use action='store_true' for boolean flags
help=f"Exclude certain layers from quantization while quantizing T5XXL."
)
args = parser.parse_args()
input_file = args.input
output_file = args.output
t5xxl = args.t5xxl
if not os.path.exists(input_file):
print(f"Error: Input file not found: {input_file}")
return
fp8_type_str = TARGET_FP8_DTYPE.__str__().split('.')[-1] # e.g., float8_e4m3fn
if not output_file:
# Generate output file name based on input file
base_name = os.path.splitext(input_file)[0]
output_file = f"{base_name}_{fp8_type_str}_scaled_stochastic.safetensors"
# Prevent overwriting input file
if os.path.abspath(input_file) == os.path.abspath(output_file):
print("Error: Output file cannot be the same as the input file.")
# Suggest a modified name
base, ext = os.path.splitext(output_file)
output_file = f"{base}_converted{ext}"
print(f"Suggestion: Use --output {output_file}")
return
convert_to_fp8_scaled(input_file, output_file, t5xxl)
if __name__ == "__main__":
main() |