CodCodingCode commited on
Commit
aeb2d0b
·
verified ·
1 Parent(s): 41d11a7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -4
README.md CHANGED
@@ -1,16 +1,80 @@
1
  ---
2
- library_name: transformers
3
- pipeline_tag: text-generation
4
  tags:
5
- - text-generation
6
  - medical
7
  - loRA
8
  - 4bit
9
- base_model: deepseek-ai/DeepSeek-V2-Lite
 
10
  ---
11
 
12
  # DeepSeek-V2-medical
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  This repository contains a 4-bit LoRA fine-tuned adapter on top of [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for medical treatment planning.
15
 
16
  ## Model Card
 
1
  ---
 
 
2
  tags:
 
3
  - medical
4
  - loRA
5
  - 4bit
6
+ - conversational
7
+ pipeline_tag: text-generation
8
  ---
9
 
10
  # DeepSeek-V2-medical
11
 
12
+ This repository contains a 4-bit LoRA adapter fine-tuned on top of [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for **medical treatment planning**.
13
+
14
+ - **Base model**: `deepseek-ai/DeepSeek-V2-Lite` (4-bit quantized)
15
+ - **Adapter**: LoRA, trained on clinical vignette → treatment plan pairs
16
+ - **Tokenizer**: same as base, with `pad_token` set to `eos`
17
+
18
+ ## Usage
19
+
20
+ ```python
21
+ from transformers import AutoTokenizer, BitsAndBytesConfig
22
+ from peft import PeftModel
23
+ import torch
24
+
25
+ # 1) Load tokenizer + adapter
26
+ tokenizer = AutoTokenizer.from_pretrained(
27
+ "CodCodingCode/DeepSeek-V2-medical",
28
+ trust_remote_code=True
29
+ )
30
+ tokenizer.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id
31
+
32
+ bnb = BitsAndBytesConfig(
33
+ load_in_4bit=True,
34
+ bnb_4bit_quant_type="nf4",
35
+ bnb_4bit_compute_dtype=torch.float16,
36
+ )
37
+
38
+ # 2) Reload the base quantized model
39
+ from transformers import AutoModelForCausalLM
40
+ base = AutoModelForCausalLM.from_pretrained(
41
+ "deepseek-ai/DeepSeek-V2-Lite",
42
+ quantization_config=bnb,
43
+ device_map="auto",
44
+ trust_remote_code=True,
45
+ )
46
+ base.resize_token_embeddings(len(tokenizer))
47
+
48
+ # 3) Attach your LoRA adapter
49
+ model = PeftModel.from_pretrained(
50
+ base,
51
+ "CodCodingCode/DeepSeek-V2-medical",
52
+ device_map="auto",
53
+ torch_dtype=torch.float16,
54
+ trust_remote_code=True,
55
+ )
56
+ model.config.use_cache = False # match your training config
57
+
58
+ # 4) Generate
59
+ prompt = (
60
+ "### Instruction:\n"
61
+ "You are a board-certified clinician ...\n\n"
62
+ "### Input:\n"
63
+ "THINKING: ...\n\n"
64
+ "### Response:\n"
65
+ )
66
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
67
+ outputs = model.generate(
68
+ **inputs,
69
+ max_new_tokens=256,
70
+ do_sample=True,
71
+ temperature=0.2,
72
+ top_p=0.95,
73
+ pad_token_id=tokenizer.pad_token_id,
74
+ eos_token_id=tokenizer.eos_token_id,
75
+ )
76
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
77
+
78
  This repository contains a 4-bit LoRA fine-tuned adapter on top of [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for medical treatment planning.
79
 
80
  ## Model Card