--- tags: - medical - loRA - 4bit - conversational pipeline_tag: text-generation --- # DeepSeek-V2-medical This repository contains a 4-bit LoRA adapter fine-tuned on top of [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for **medical treatment planning**. - **Base model**: `deepseek-ai/DeepSeek-V2-Lite` (4-bit quantized) - **Adapter**: LoRA, trained on clinical vignette → treatment plan pairs - **Tokenizer**: same as base, with `pad_token` set to `eos` ## Usage ```python from transformers import AutoTokenizer, BitsAndBytesConfig from peft import PeftModel import torch # 1) Load tokenizer + adapter tokenizer = AutoTokenizer.from_pretrained( "CodCodingCode/DeepSeek-V2-medical", trust_remote_code=True ) tokenizer.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id bnb = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) # 2) Reload the base quantized model from transformers import AutoModelForCausalLM base = AutoModelForCausalLM.from_pretrained( "deepseek-ai/DeepSeek-V2-Lite", quantization_config=bnb, device_map="auto", trust_remote_code=True, ) base.resize_token_embeddings(len(tokenizer)) # 3) Attach your LoRA adapter model = PeftModel.from_pretrained( base, "CodCodingCode/DeepSeek-V2-medical", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True, ) model.config.use_cache = False # match your training config # 4) Generate prompt = ( "### Instruction:\n" "You are a board-certified clinician ...\n\n" "### Input:\n" "THINKING: ...\n\n" "### Response:\n" ) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=256, do_sample=True, temperature=0.2, top_p=0.95, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) This repository contains a 4-bit LoRA fine-tuned adapter on top of [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for medical treatment planning. ## Model Card - **Base model:** `deepseek-ai/DeepSeek-V2-Lite` (4-bit quantized) - **Adapter:** LoRA, trained on clinical vignette→treatment pairs - **Tokenizer:** same as base, with pad_token set to eos ## Usage ```python from transformers import AutoTokenizer, BitsAndBytesConfig from peft import PeftModel import torch # 1) Load tokenizer + adapter tokenizer = AutoTokenizer.from_pretrained( "CodCodingCode/DeepSeek-V2-medical", trust_remote_code=True ) tokenizer.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id # 2) Reload quantized base bnb = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) base = AutoModelForCausalLM.from_pretrained( "deepseek-ai/DeepSeek-V2-Lite", quantization_config=bnb, device_map="auto", trust_remote_code=True, ) base.resize_token_embeddings(len(tokenizer)) # 3) Attach LoRA adapter model = PeftModel.from_pretrained( base, "CodCodingCode/DeepSeek-V2-medical", device_map="auto", trust_remote_code=True, ) model.config.use_cache = False # 4) Generate text prompt = ( "### Instruction:\n" "You are a board-certified clinician. Based on the following patient vignette, " "suggest a concise treatment plan:\n\n" "### Input:\n" "A 65-year-old presents with chronic shortness of breath and persistent cough...\n\n" "### Response:\n" ) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, top_p=0.9, temperature=0.8, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # Model Card for Model ID ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2