Create handler.py
Browse files- handler.py +59 -0
handler.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
|
6 |
+
class EndpointHandler():
|
7 |
+
def __init__(self, path=""):
|
8 |
+
# Load model and tokenizer
|
9 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
10 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
path,
|
12 |
+
device_map="auto",
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
)
|
15 |
+
|
16 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
17 |
+
"""
|
18 |
+
data args:
|
19 |
+
inputs (:str): a string to be generated from
|
20 |
+
parameters (:dict): generation parameters
|
21 |
+
Return:
|
22 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
23 |
+
"""
|
24 |
+
|
25 |
+
# Get the input text
|
26 |
+
inputs = data.pop("inputs", data)
|
27 |
+
parameters = data.pop("parameters", {})
|
28 |
+
|
29 |
+
# Set default parameters
|
30 |
+
max_new_tokens = parameters.get("max_new_tokens", 400)
|
31 |
+
temperature = parameters.get("temperature", 0.7)
|
32 |
+
do_sample = parameters.get("do_sample", True)
|
33 |
+
top_p = parameters.get("top_p", 0.9)
|
34 |
+
return_full_text = parameters.get("return_full_text", True)
|
35 |
+
|
36 |
+
# Tokenize the input
|
37 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt").to(self.model.device)
|
38 |
+
|
39 |
+
# Generate text
|
40 |
+
with torch.no_grad():
|
41 |
+
generated_ids = self.model.generate(
|
42 |
+
**input_ids,
|
43 |
+
max_new_tokens=max_new_tokens,
|
44 |
+
temperature=temperature,
|
45 |
+
do_sample=do_sample,
|
46 |
+
top_p=top_p,
|
47 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
48 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
49 |
+
)
|
50 |
+
|
51 |
+
# Decode the generated text
|
52 |
+
if return_full_text:
|
53 |
+
generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
54 |
+
else:
|
55 |
+
# Only return the newly generated part
|
56 |
+
new_tokens = generated_ids[0][input_ids["input_ids"].shape[1]:]
|
57 |
+
generated_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
58 |
+
|
59 |
+
return [{"generated_text": generated_text}]
|