CodCodingCode commited on
Commit
61d1ef9
·
verified ·
1 Parent(s): f23aa8f

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +59 -0
handler.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+
5
+
6
+ class EndpointHandler():
7
+ def __init__(self, path=""):
8
+ # Load model and tokenizer
9
+ self.tokenizer = AutoTokenizer.from_pretrained(path)
10
+ self.model = AutoModelForCausalLM.from_pretrained(
11
+ path,
12
+ device_map="auto",
13
+ torch_dtype=torch.bfloat16,
14
+ )
15
+
16
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
17
+ """
18
+ data args:
19
+ inputs (:str): a string to be generated from
20
+ parameters (:dict): generation parameters
21
+ Return:
22
+ A :obj:`list` | `dict`: will be serialized and returned
23
+ """
24
+
25
+ # Get the input text
26
+ inputs = data.pop("inputs", data)
27
+ parameters = data.pop("parameters", {})
28
+
29
+ # Set default parameters
30
+ max_new_tokens = parameters.get("max_new_tokens", 400)
31
+ temperature = parameters.get("temperature", 0.7)
32
+ do_sample = parameters.get("do_sample", True)
33
+ top_p = parameters.get("top_p", 0.9)
34
+ return_full_text = parameters.get("return_full_text", True)
35
+
36
+ # Tokenize the input
37
+ input_ids = self.tokenizer(inputs, return_tensors="pt").to(self.model.device)
38
+
39
+ # Generate text
40
+ with torch.no_grad():
41
+ generated_ids = self.model.generate(
42
+ **input_ids,
43
+ max_new_tokens=max_new_tokens,
44
+ temperature=temperature,
45
+ do_sample=do_sample,
46
+ top_p=top_p,
47
+ pad_token_id=self.tokenizer.eos_token_id,
48
+ eos_token_id=self.tokenizer.eos_token_id,
49
+ )
50
+
51
+ # Decode the generated text
52
+ if return_full_text:
53
+ generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
54
+ else:
55
+ # Only return the newly generated part
56
+ new_tokens = generated_ids[0][input_ids["input_ids"].shape[1]:]
57
+ generated_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
58
+
59
+ return [{"generated_text": generated_text}]