from typing import Dict, List, Any import torch from transformers import AutoTokenizer, AutoModelForCausalLM class EndpointHandler(): def __init__(self, path=""): # Load model and tokenizer self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModelForCausalLM.from_pretrained( path, device_map="auto", torch_dtype=torch.bfloat16, ) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:str): a string to be generated from parameters (:dict): generation parameters Return: A :obj:`list` | `dict`: will be serialized and returned """ # Get the input text inputs = data.pop("inputs", data) parameters = data.pop("parameters", {}) # Set default parameters max_new_tokens = parameters.get("max_new_tokens", 400) temperature = parameters.get("temperature", 0.7) do_sample = parameters.get("do_sample", True) top_p = parameters.get("top_p", 0.9) return_full_text = parameters.get("return_full_text", True) # Tokenize the input input_ids = self.tokenizer(inputs, return_tensors="pt").to(self.model.device) # Generate text with torch.no_grad(): generated_ids = self.model.generate( **input_ids, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=do_sample, top_p=top_p, pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id, ) # Decode the generated text if return_full_text: generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) else: # Only return the newly generated part new_tokens = generated_ids[0][input_ids["input_ids"].shape[1]:] generated_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True) return [{"generated_text": generated_text}]