File size: 2,359 Bytes
0550a4b 571678a 0550a4b 571678a 0550a4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: my_new_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_new_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4151
- Accuracy: 0.882
- F1: 0.8815
- Precision: 0.8825
- Recall: 0.882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log | 1.0 | 125 | 0.5276 | 0.846 | 0.8496 | 0.8591 | 0.846 |
| No log | 2.0 | 250 | 0.3993 | 0.874 | 0.8755 | 0.8801 | 0.874 |
| No log | 3.0 | 375 | 0.3623 | 0.878 | 0.8808 | 0.8896 | 0.878 |
| 0.5033 | 4.0 | 500 | 0.3386 | 0.898 | 0.8985 | 0.9005 | 0.898 |
| 0.5033 | 5.0 | 625 | 0.3791 | 0.884 | 0.8840 | 0.8850 | 0.884 |
| 0.5033 | 6.0 | 750 | 0.3490 | 0.898 | 0.8993 | 0.9020 | 0.898 |
| 0.5033 | 7.0 | 875 | 0.3899 | 0.89 | 0.8898 | 0.8897 | 0.89 |
| 0.1244 | 8.0 | 1000 | 0.4148 | 0.87 | 0.8690 | 0.8686 | 0.87 |
| 0.1244 | 9.0 | 1125 | 0.4030 | 0.888 | 0.8880 | 0.8887 | 0.888 |
| 0.1244 | 10.0 | 1250 | 0.4151 | 0.882 | 0.8815 | 0.8825 | 0.882 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|