File size: 1,593 Bytes
c15e632 f27f72d c15e632 f27f72d c15e632 0e006c7 c15e632 0e006c7 c15e632 0e006c7 c15e632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: transformers
paper: https://arxiv.org/abs/2409.03277
---
<div align='center'>
<h1>This is a reproduction of ChartMoE according to its official github repo, which has better performance on ChartQA(with/without PoT).</h1>
</div>
<p align="center">
<b><font size="6">ChartMoE</font></b>
<p>
<p align="center">
<b><font size="4">ICLR2025 Oral </font></b>
<p>
<div align='center'>
[Project Page](https://chartmoe.github.io/)
[Github Repo](https://github.com/IDEA-FinAI/ChartMoE)
[Paper](https://arxiv.org/abs/2409.03277)
</div>

**ChartMoE** is a multimodal large language model with Mixture-of-Expert connector, based on [InternLM-XComposer2](https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-2.0) for advanced chart 1)understanding, 2)replot, 3)editing, 4)highlighting and 5)transformation.
## Import from Transformers
To load the ChartMoE model using Transformers, use the following code:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
ckpt_path = "IDEA-FinAI/chartmoe"
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(ckpt_path, trust_remote_code=True).half().cuda().eval()
```
## Quickstart & Gradio Demo
We provide a simple example and a gradio webui demo to show how to use ChartMoE. Please refer to [https://github.com/IDEA-FinAI/ChartMoE](https://github.com/IDEA-FinAI/ChartMoE).
## Open Source License
The code is licensed under Apache-2.0. |