File size: 1,593 Bytes
c15e632
 
f27f72d
c15e632
f27f72d
c15e632
 
 
0e006c7
 
 
 
c15e632
0e006c7
 
 
 
c15e632
 
0e006c7
 
c15e632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: transformers
paper: https://arxiv.org/abs/2409.03277
---


<div align='center'>
<h1>This is a reproduction of ChartMoE according to its official github repo, which has better performance on ChartQA(with/without PoT).</h1>
</div>

<p align="center">
    <b><font size="6">ChartMoE</font></b>
<p>
<p align="center">
    <b><font size="4">ICLR2025 Oral </font></b>
<p>

<div align='center'>
  
[Project Page](https://chartmoe.github.io/)

[Github Repo](https://github.com/IDEA-FinAI/ChartMoE)

[Paper](https://arxiv.org/abs/2409.03277)

</div>

![](teaser.png)

**ChartMoE** is a multimodal large language model with Mixture-of-Expert connector, based on [InternLM-XComposer2](https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-2.0) for advanced chart 1)understanding, 2)replot, 3)editing, 4)highlighting and 5)transformation. 


## Import from Transformers
To load the ChartMoE model using Transformers, use the following code:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
ckpt_path = "IDEA-FinAI/chartmoe"
tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(ckpt_path, trust_remote_code=True).half().cuda().eval()
```

## Quickstart & Gradio Demo
We provide a simple example and a gradio webui demo to show how to use ChartMoE. Please refer to [https://github.com/IDEA-FinAI/ChartMoE](https://github.com/IDEA-FinAI/ChartMoE).


## Open Source License
The code is licensed under Apache-2.0.