File size: 2,159 Bytes
453f151
 
 
92d393b
453f151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d393b
453f151
92d393b
 
 
 
 
453f151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490ac62
92d393b
 
453f151
 
 
92d393b
490ac62
453f151
 
 
ffd548f
 
92d393b
 
 
 
 
 
453f151
 
 
 
e75f1cc
ffd548f
 
453f151
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_wnut_model

This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5795
- Precision: 0.2438
- Recall: 0.6759
- F1: 0.3583
- Accuracy: 0.8634

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.5943        | 1.0   | 38   | 0.3653          | 0.1156    | 0.6069 | 0.1943 | 0.8489   |
| 1.5943        | 2.0   | 76   | 0.3859          | 0.2032    | 0.7034 | 0.3153 | 0.8691   |
| 0.2445        | 3.0   | 114  | 0.4085          | 0.2422    | 0.8069 | 0.3726 | 0.8679   |
| 0.2445        | 4.0   | 152  | 0.3778          | 0.2013    | 0.6345 | 0.3056 | 0.8733   |
| 0.2445        | 5.0   | 190  | 0.4417          | 0.2010    | 0.5448 | 0.2937 | 0.8755   |
| 0.0861        | 6.0   | 228  | 0.5795          | 0.2438    | 0.6759 | 0.3583 | 0.8634   |


### Framework versions

- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2