#include "clamp.cuh" static __device__ __forceinline__ float op_clamp(float x, float min, float max) { return fminf(fmaxf(x, min), max); } template static __global__ void op_clamp_kernel(const T * x, T * dst, const T min, const T max, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = (T)op_clamp((float)x[i], (float)min, (float)max); } template static void clamp_cuda(const T * x, T * dst, const T min, const T max, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE; op_clamp_kernel<<>>(x, dst, min, max, k); } void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const void * src0_d = src0->data; void * dst_d = dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == dst->type); float min; float max; memcpy(&min, dst->op_params, sizeof(float)); memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); if (src0->type == GGML_TYPE_F16) { clamp_cuda((const half *)src0_d, (half *)dst_d, (half)min, (half)max, ggml_nelements(src0), stream); } else { clamp_cuda((const float *)src0_d, (float *)dst_d, (float)min, (float)max, ggml_nelements(src0), stream); } }