File size: 2,300 Bytes
dd7cdee
 
 
 
 
 
 
 
 
 
 
 
 
 
87de28f
dd7cdee
 
c43ce2b
dd7cdee
 
c43ce2b
dd7cdee
 
 
 
 
c43ce2b
dd7cdee
 
 
 
 
 
 
 
 
 
 
 
c43ce2b
dd7cdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c43ce2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: openrail
datasets:
- DarthReca/hydro-chronos
tags:
- climate
- geospatial
- remote-sensing
- spatiotemporal
- multi-modal
- earth-observation
- time-series
- hydrology
library_name: transformers
pipeline_tag: image-segmentation
---

# ACTU for Change Detection

<!-- Provide a quick summary of what the model is/does. -->
This is ACTU for change detection of thresholded absolute MNDWI difference.

## Model Details

<!-- Provide a longer summary of what this model is. -->
This architecture is a temporal UNet (with ConvLSTMs), featuring an LSTM branch to process climate timeseries and a gating mechanism. 
It is designed to receive a timeseries of Sentinel-2 images, DEM, and timeseries of climate variables and output a binary mask.

- **Developed by:** Daniele Rege Cambrin
- **Model type:** ACTU
- **License:** OpenRAIL
- **Repository:** [Github](https://github.com/DarthReca/hydro-chronos)
- **Paper:** [Arxiv](https://arxiv.org/abs/2506.14362)


## How to Get Started with the Model
The model is integrated into Transformers, so you can easily load it with the following code:

```python
AutoModel.from_pretrained("DarthReca/actu-change-detection", trust_remote_code=True, revision=<model_type>)
```

Load the model with the desired configuration with the *revision* parameter (the branches of this repo). These configurations are available:

| Revision    | Backbone        | DEM | Climate |
|-------------|-----------------|:---:|:-------:|
| main        | ConvNeXtV2 Base |  No  |    No    |
| dem-climate | ConvNeXtV2 Base |  Yes  |    Yes    |

## Training Details
The model is pre-trained on Landsat-5 images and fine-tuned on Sentinel-2 of HydroChronos.

## Citation

```bibtex
@misc{cambrin2025hydrochronosforecastingdecadessurface,
      title={HydroChronos: Forecasting Decades of Surface Water Change}, 
      author={Daniele Rege Cambrin and Eleonora Poeta and Eliana Pastor and Isaac Corley and Tania Cerquitelli and Elena Baralis and Paolo Garza},
      year={2025},
      eprint={2506.14362},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2506.14362}, 
}
```

## Licensing
The project uses third-party software. For detailed information on the licensing of each component, please see the [**NOTICE.md**](NOTICE.md) file.