File size: 2,044 Bytes
c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 c756a53 d578662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
language: ko
datasets:
- investing_comments_krw
metrics:
- accuracy
- precision
- recall
- f1
tags:
- sentiment-analysis
- finance
- krw
- binary-classification
- emotion
model-index:
- name: FinBERT-Sentiment-KRW-Comment (v3)
results:
- task:
type: text-classification
name: Sentiment Analysis (Fear vs. Greed)
metrics:
- type: accuracy
value: 0.94
- type: precision
value: 0.94
- type: recall
value: 0.94
- type: f1
value: 0.94
---
# FinBERT-Sentiment-KRW-Comment (v3)
μ΄ λͺ¨λΈμ [`snunlp/KR-FinBERT-SC`](https://huggingface.co/snunlp/KR-FinBERT-SC)λ₯Ό κΈ°λ°μΌλ‘ νμΈνλν νκ΅μ΄ κΈμ΅ κ°μ λΆμ λͺ¨λΈμ
λλ€.
νΉν **νμ¨(FX) κ΄λ ¨ λκΈ**μμ λνλλ κ°μ μ **곡ν¬(0)** λλ **μμ¬(1)** μ΄μ§ λΆλ₯νλ λ° λͺ©μ μ΄ μμ΅λλ€.
## π§Ύ λΌλ²¨ μ μ
| λΌλ²¨ | μ€λͺ
|
|------|------------|
| 0 | κ³΅ν¬ (Fear) |
| 1 | μμ¬ (Greed) |
## ποΈββοΈ νμ΅ μ 보
- **Base model**: `snunlp/KR-FinBERT-SC`
- **Task**: κ°μ μ΄μ§ λΆλ₯ (κ³΅ν¬ vs μμ¬)
- **Input**: νκ΅μ΄ λκΈ (`content`)
- **Output**: 0 λλ 1
- **Training epochs**: 4
- **Train size**: μ½ `X` κ°
- **Eval size**: μ½ `X` κ°
- **Evaluation metric**: Accuracy, Precision, Recall, F1
### π νκ° κ²°κ³Ό (Test Set κΈ°μ€)
| Metric | Score |
|------------|-------|
| Accuracy | 0.94 |
| Precision | 0.94 |
| Recall | 0.94 |
| F1-score | 0.94 |
> 곡ν¬(0): precision=0.95, recall=0.91, f1=0.93
> μμ¬(1): precision=0.93, recall=0.96, f1=0.94
## π§ͺ μ¬μ© μμ
```python
from transformers import pipeline
pipe = pipeline("text-classification", model="DataWizardd/finbert-sentiment-krw-comment-v3")
pipe("μ¬μμΉ μλ€μ μ€λμ μ λ°λ°νκ³ 1μ8μΌμ κΉμ μμ΄ λ―Έμ¬μΌ μ€ννκ³ κ·Έλ¬λ©΄ 1170μ κΈ°λ³Έμ΄κ³ 1190μλ μμκ°μΌλ―.")
# β [{'label': '1', 'score': 0.98}]
|