File size: 6,326 Bytes
592e96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import pandas as pd
from pathlib import Path
import numpy as np
from sklearn.model_selection import train_test_split

def concatenate_and_split_parquet(
    input_dir: str, 
    output_dir: str, 
    val_size: int = 10000, 
    test_size: int = 5000,
    random_state: int = 42
):
    """
    Concatenate all parquet files in a directory and split into train/val/test sets.
    
    Args:
        input_dir: Path to directory containing parquet files
        output_dir: Path to directory where split files will be saved
        val_size: Number of samples for validation set (default: 10000)
        test_size: Number of samples for test set (default: 5000)
        random_state: Random seed for reproducibility
    """
    
    # Create output directory if it doesn't exist
    Path(output_dir).mkdir(parents=True, exist_ok=True)
    
    # Find all parquet files in the input directory
    input_path = Path(input_dir)
    parquet_files = list(input_path.glob("*.parquet"))
    
    if not parquet_files:
        raise ValueError(f"No parquet files found in {input_dir}")
    
    print(f"Found {len(parquet_files)} parquet files")
    
    # Read and concatenate all parquet files
    print("Reading and concatenating parquet files...")
    dataframes = []
    
    for file_path in parquet_files:
        print(f"Reading {file_path.name}...")
        df = pd.read_parquet(file_path)
        dataframes.append(df)
    
    # Concatenate all dataframes
    combined_df = pd.concat(dataframes, ignore_index=True)
    print(f"Combined dataset shape: {combined_df.shape}")
    
    # Check if we have enough samples
    total_samples = len(combined_df)
    required_samples = val_size + test_size
    
    if total_samples < required_samples:
        raise ValueError(
            f"Not enough samples. Required: {required_samples}, Available: {total_samples}"
        )
    
    # Shuffle the data
    combined_df = combined_df.sample(frac=1, random_state=random_state).reset_index(drop=True)
    
    # Split the data
    print("Splitting data...")
    
    # First split: separate test set
    temp_df, test_df = train_test_split(
        combined_df, 
        test_size=test_size, 
        random_state=random_state
    )
    
    # Second split: separate validation from remaining data
    train_df, val_df = train_test_split(
        temp_df, 
        test_size=val_size, 
        random_state=random_state
    )
    
    print(f"Training set shape: {train_df.shape}")
    print(f"Validation set shape: {val_df.shape}")
    print(f"Test set shape: {test_df.shape}")
    
    # Save the splits as parquet files
    output_path = Path(output_dir)
    
    train_path = output_path / "train.parquet"
    val_path = output_path / "validation.parquet"
    test_path = output_path / "test.parquet"
    
    print("Saving split datasets...")
    train_df.to_parquet(train_path, index=False)
    val_df.to_parquet(val_path, index=False)
    test_df.to_parquet(test_path, index=False)
    
    print(f"Files saved to:")
    print(f"  Training: {train_path}")
    print(f"  Validation: {val_path}")
    print(f"  Test: {test_path}")
    
    return train_df, val_df, test_df

# Alternative version using PyArrow for better performance with large files
def concatenate_and_split_parquet_arrow(
    input_dir: str, 
    output_dir: str, 
    val_size: int = 10000, 
    test_size: int = 5000,
    random_state: int = 42
):
    """
    Same functionality as above but using PyArrow for better performance.
    """
    import pyarrow as pa
    import pyarrow.parquet as pq
    
    # Create output directory if it doesn't exist
    Path(output_dir).mkdir(parents=True, exist_ok=True)
    
    # Find all parquet files
    input_path = Path(input_dir)
    parquet_files = list(input_path.glob("*.parquet"))
    
    if not parquet_files:
        raise ValueError(f"No parquet files found in {input_dir}")
    
    print(f"Found {len(parquet_files)} parquet files")
    
    # Read and concatenate using PyArrow
    print("Reading and concatenating parquet files...")
    tables = []
    
    for file_path in parquet_files:
        print(f"Reading {file_path.name}...")
        table = pq.read_table(file_path)
        tables.append(table)
    
    # Concatenate tables
    combined_table = pa.concat_tables(tables)
    combined_df = combined_table.to_pandas()
    
    print(f"Combined dataset shape: {combined_df.shape}")
    
    # Rest of the function is the same as above
    total_samples = len(combined_df)
    required_samples = val_size + test_size
    
    if total_samples < required_samples:
        raise ValueError(
            f"Not enough samples. Required: {required_samples}, Available: {total_samples}"
        )
    
    # Shuffle and split
    combined_df = combined_df.sample(frac=1, random_state=random_state).reset_index(drop=True)
    
    temp_df, test_df = train_test_split(
        combined_df, test_size=test_size, random_state=random_state
    )
    
    train_df, val_df = train_test_split(
        temp_df, test_size=val_size, random_state=random_state
    )
    
    print(f"Training set shape: {train_df.shape}")
    print(f"Validation set shape: {val_df.shape}")
    print(f"Test set shape: {test_df.shape}")
    
    # Save using PyArrow
    output_path = Path(output_dir)
    
    pq.write_table(pa.Table.from_pandas(train_df), output_path / "train.parquet")
    pq.write_table(pa.Table.from_pandas(val_df), output_path / "validation.parquet")
    pq.write_table(pa.Table.from_pandas(test_df), output_path / "test.parquet")
    
    print(f"Files saved to {output_dir}")
    
    return train_df, val_df, test_df

# Example usage
if __name__ == "__main__":
    # Example usage
    input_directory = "data"
    output_directory = "data/polymer_splits"
    
    # Using pandas version
    train_df, val_df, test_df = concatenate_and_split_parquet(
        input_dir=input_directory,
        output_dir=output_directory,
        val_size=10000,
        test_size=5000,
        random_state=42
    )
    
    # Or using PyArrow version for better performance
    # train_df, val_df, test_df = concatenate_and_split_parquet_arrow(
    #     input_dir=input_directory,
    #     output_dir=output_directory,
    #     val_size=10000,
    #     test_size=5000,
    #     random_state=42
    # )