File size: 69,249 Bytes
592e96e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "11ab9ea6-1c5b-4f9b-a6ea-1bc75be56108",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import warnings\n",
"\n",
"import joblib\n",
"import numpy as np\n",
"import pandas as pd\n",
"import torch\n",
"from sklearn.metrics import mean_absolute_error\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from torch import nn\n",
"from torch.optim import AdamW\n",
"from torch.optim.lr_scheduler import LinearLR\n",
"from torch.utils.data import DataLoader, Dataset\n",
"from tqdm import tqdm\n",
"from transformers import (\n",
" AutoConfig,\n",
" AutoModel,\n",
" AutoTokenizer,\n",
" BertConfig,\n",
" BertModel,\n",
" BertTokenizerFast,\n",
" PreTrainedModel,\n",
")\n",
"from transformers.activations import ACT2FN\n",
"\n",
"warnings.filterwarnings(\"ignore\")\n",
"\n",
"torch.backends.cuda.matmul.allow_tf32 = True\n",
"torch.backends.cudnn.allow_tf32 = True\n",
"\n",
"def global_ap(x):\n",
" return torch.mean(x.view(x.size(0), x.size(1), -1), dim=1)\n",
"\n",
"class SimSonEncoder(nn.Module):\n",
" def __init__(self, config: BertConfig, max_len: int, dropout: float = 0.1):\n",
" super(SimSonEncoder, self).__init__()\n",
" self.config = config\n",
" self.max_len = max_len\n",
" \n",
" self.bert = BertModel(config, add_pooling_layer=False)\n",
" \n",
" self.linear = nn.Linear(config.hidden_size, max_len)\n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" def forward(self, input_ids, attention_mask=None):\n",
" if attention_mask is None:\n",
" attention_mask = input_ids.ne(0)\n",
" \n",
" outputs = self.bert(\n",
" input_ids=input_ids,\n",
" attention_mask=attention_mask\n",
" )\n",
" \n",
" hidden_states = outputs.last_hidden_state\n",
" \n",
" hidden_states = self.dropout(hidden_states)\n",
" \n",
" pooled = global_ap(hidden_states)\n",
" \n",
" out = self.linear(pooled)\n",
" \n",
" return out\n",
"\n",
"class SimSonClassifier(nn.Module):\n",
" def __init__(self, encoder: SimSonEncoder, num_labels: int, dropout=0.1):\n",
" super(SimSonClassifier, self).__init__()\n",
" self.encoder = encoder\n",
" self.clf = nn.Linear(encoder.max_len, num_labels)\n",
" self.relu = nn.ReLU()\n",
" self.dropout = nn.Dropout(dropout)\n",
"\n",
" def forward(self, input_ids, attention_mask=None, labels=None):\n",
" x = self.encoder(input_ids, attention_mask)\n",
" x = self.relu(self.dropout(x))\n",
" x = self.clf(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ce760993-fbef-4546-8b2c-1e7a722ad374",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import torch\n",
"from torch.utils.data import Dataset\n",
"\n",
"\n",
"class SMILESDataset(Dataset):\n",
" def __init__(self, smiles_list, labels, tokenizer, max_length=256):\n",
" self.smiles_list = smiles_list\n",
" self.labels = labels # Shape: (num_samples, 2) - already scaled\n",
" self.tokenizer = tokenizer\n",
" self.max_length = max_length\n",
" \n",
" # Create mask for valid (non-NaN) labels\n",
" self.label_masks = ~np.isnan(self.labels) # True where label is valid\n",
" \n",
" # Replace NaNs with 0 for safe tensor conversion (mask will handle exclusion)\n",
" self.labels = np.nan_to_num(self.labels, nan=0.0)\n",
" \n",
" def __len__(self):\n",
" return len(self.smiles_list)\n",
" \n",
" def __getitem__(self, idx):\n",
" smiles = self.tokenizer.cls_token + self.smiles_list[idx]\n",
" \n",
" # Tokenize the SMILES string\n",
" encoding = self.tokenizer(\n",
" smiles,\n",
" truncation=True,\n",
" padding='max_length',\n",
" max_length=self.max_length,\n",
" return_tensors='pt'\n",
" )\n",
" \n",
" return {\n",
" 'input_ids': encoding['input_ids'].flatten(),\n",
" 'attention_mask': encoding['attention_mask'].flatten(),\n",
" 'labels': torch.tensor(self.labels[idx], dtype=torch.float32),\n",
" 'label_mask': torch.tensor(self.label_masks[idx], dtype=torch.float32)\n",
" }\n",
" \n",
" def get_label_statistics(self):\n",
" \"\"\"Return statistics about label availability\"\"\"\n",
" label_counts = self.label_masks.sum(axis=0)\n",
" total_samples = len(self.smiles_list)\n",
" \n",
" stats = {\n",
" 'total_samples': total_samples,\n",
" 'label_0_count': label_counts[0],\n",
" 'label_1_count': label_counts[1],\n",
" 'label_0_ratio': label_counts[0] / total_samples,\n",
" 'label_1_ratio': label_counts[1] / total_samples,\n",
" 'both_labels_count': (self.label_masks.sum(axis=1) == 2).sum(),\n",
" 'single_label_count': (self.label_masks.sum(axis=1) == 1).sum(),\n",
" 'no_labels_count': (self.label_masks.sum(axis=1) == 0).sum()\n",
" }\n",
" \n",
" return stats\n",
"\n",
"def calculate_weighted_loss(predictions, labels, label_mask, label_weights):\n",
" \"\"\"\n",
" Calculate weighted loss for two labels with masking\n",
" \n",
" Args:\n",
" predictions: Model outputs (batch_size, 2)\n",
" labels: Ground truth labels (batch_size, 2)\n",
" label_mask: Mask for valid labels (batch_size, 2)\n",
" label_weights: Weights for each label (2,)\n",
" \"\"\"\n",
" loss_fn = nn.MSELoss(reduction='none')\n",
" \n",
" # Calculate per-sample, per-label losses\n",
" losses = loss_fn(predictions, labels) # Shape: (batch_size, 2)\n",
" \n",
" # Apply masking to exclude NaN labels\n",
" valid_mask = label_mask.bool()\n",
" masked_losses = losses * valid_mask.float()\n",
" \n",
" # Apply label-specific weights\n",
" weighted_losses = masked_losses * label_weights.unsqueeze(0) # Broadcast weights\n",
" \n",
" # Calculate final loss (only over valid predictions)\n",
" total_loss = weighted_losses.sum()\n",
" total_valid = valid_mask.sum()\n",
" \n",
" return total_loss / total_valid if total_valid > 0 else torch.tensor(0.0, device=predictions.device, requires_grad=True)\n",
"\n",
"def compute_label_weights(dataset):\n",
" \"\"\"\n",
" Compute inverse frequency weights based on label availability\n",
" \n",
" Args:\n",
" dataset: SMILESDataset instance\n",
" \n",
" Returns:\n",
" torch.Tensor: Normalized weights for each label\n",
" \"\"\"\n",
" # Get label counts from dataset\n",
" label_counts = dataset.label_masks.sum(axis=0) # Count valid samples per label\n",
" total_samples = len(dataset)\n",
" \n",
" # Inverse frequency weighting\n",
" weights = total_samples / (2 * label_counts) # 2 is the number of labels\n",
" \n",
" # Normalize weights so they sum to number of labels (2)\n",
" weights = weights / weights.sum() * 2\n",
" \n",
" return torch.tensor(weights, dtype=torch.float32)\n",
"\n",
"def calculate_true_loss(predictions, labels, label_mask, scalers=None):\n",
" \"\"\"\n",
" Calculate unscaled MAE loss for monitoring using separate scalers for each label\n",
" \n",
" Args:\n",
" predictions (torch.Tensor): Model outputs of shape (batch_size, 2).\n",
" labels (torch.Tensor): Ground truth labels of shape (batch_size, 2).\n",
" label_mask (torch.Tensor): Boolean mask for valid labels of shape (batch_size, 2).\n",
" scalers: List of scaler objects, one for each label\n",
" \"\"\"\n",
" # Detach tensors from the computation graph and move to CPU\n",
" predictions_np = predictions.cpu().detach().numpy()\n",
" labels_np = labels.cpu().numpy()\n",
" label_mask_np = label_mask.cpu().numpy().astype(bool)\n",
" \n",
" total_mae = 0\n",
" total_samples = 0\n",
" \n",
" for label_idx in range(2):\n",
" # Get valid samples for this label\n",
" valid_mask = label_mask_np[:, label_idx]\n",
" \n",
" if valid_mask.any():\n",
" valid_preds = predictions_np[valid_mask, label_idx].reshape(-1, 1)\n",
" valid_labels = labels_np[valid_mask, label_idx].reshape(-1, 1)\n",
" \n",
" if scalers is not None:\n",
" # Unscale using the corresponding scaler for this label\n",
" unscaled_preds = scalers[label_idx].inverse_transform(valid_preds).flatten()\n",
" unscaled_labels = scalers[label_idx].inverse_transform(valid_labels).flatten()\n",
" else:\n",
" unscaled_preds = valid_preds.flatten()\n",
" unscaled_labels = valid_labels.flatten()\n",
" \n",
" # Calculate MAE for this label\n",
" mae = np.mean(np.abs(unscaled_preds - unscaled_labels))\n",
" total_mae += mae * len(unscaled_preds)\n",
" total_samples += len(unscaled_preds)\n",
" \n",
" return total_mae / total_samples if total_samples > 0 else 0.0\n",
"\n",
"\n",
"def train_model(model, train_dataloader, val_dataloader, label_weights, \n",
" scalers=None, num_epochs=10, learning_rate=2e-5, device='cuda', \n",
" patience=3, validation_steps=500):\n",
" \"\"\"\n",
" Train model with weighted loss for two labels with step-based validation\n",
" \n",
" Args:\n",
" model: CustomModel instance (should output 2 labels)\n",
" train_dataloader: Training data loader\n",
" val_dataloader: Validation data loader \n",
" label_weights: Tensor with weights for each label\n",
" scalers: List of scalers for unscaled loss monitoring\n",
" num_epochs: Number of training epochs\n",
" learning_rate: Learning rate\n",
" device: Training device\n",
" patience: Early stopping patience (in validation steps)\n",
" validation_steps: Perform validation every N training steps\n",
" \"\"\"\n",
" model.to(device)\n",
" label_weights = label_weights.to(device)\n",
" \n",
" optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=0.01)\n",
" total_steps = len(train_dataloader) * num_epochs\n",
" scheduler = LinearLR(optimizer, start_factor=1.0, end_factor=0.1, total_iters=total_steps)\n",
" \n",
" train_losses = []\n",
" val_losses = []\n",
" \n",
" # Early stopping initialization\n",
" best_val_loss = float('inf')\n",
" steps_no_improve = 0\n",
" best_model_state = None\n",
" \n",
" # Training tracking\n",
" global_step = 0\n",
" running_train_loss = 0\n",
" running_true_train_loss = 0\n",
" train_steps_count = 0\n",
" \n",
" print(f\"Label weights: {label_weights.cpu().numpy()}\")\n",
" print(f\"Validation will be performed every {validation_steps} steps\")\n",
" \n",
" model.train()\n",
" \n",
" for epoch in range(num_epochs):\n",
" print(f\"\\nEpoch {epoch + 1}/{num_epochs}\")\n",
" \n",
" train_progress = tqdm(train_dataloader, desc=\"Training\", leave=False)\n",
" \n",
" for batch_idx, batch in enumerate(train_progress):\n",
" with torch.autocast(dtype=torch.float16, device_type=\"cuda\"):\n",
" input_ids = batch['input_ids'].to(device)\n",
" attention_mask = batch['attention_mask'].to(device)\n",
" labels = batch['labels'].to(device)\n",
" label_mask = batch['label_mask'].to(device)\n",
" \n",
" optimizer.zero_grad()\n",
" \n",
" # Model forward pass\n",
" outputs = model(\n",
" input_ids=input_ids,\n",
" attention_mask=attention_mask,\n",
" )\n",
" \n",
" # Calculate weighted loss\n",
" loss = calculate_weighted_loss(outputs, labels, label_mask, label_weights)\n",
" \n",
" # Calculate true loss for monitoring\n",
" true_loss = calculate_true_loss(outputs, labels, label_mask, scalers)\n",
" \n",
" # Accumulate losses for averaging\n",
" running_train_loss += loss.item()\n",
" running_true_train_loss += true_loss\n",
" train_steps_count += 1\n",
" \n",
" loss.backward()\n",
" \n",
" torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)\n",
" \n",
" optimizer.step()\n",
" scheduler.step()\n",
" \n",
" global_step += 1\n",
" \n",
" train_progress.set_postfix({\n",
" 'step': global_step,\n",
" 'loss': f'{loss.item():.4f}',\n",
" 'true_loss': f'{true_loss:.4f}',\n",
" 'lr': f'{scheduler.get_last_lr()[0]:.2e}'\n",
" })\n",
" \n",
" # Perform validation every validation_steps\n",
" if global_step % validation_steps == 0:\n",
" # Calculate average training losses since last validation\n",
" avg_train_loss = running_train_loss / train_steps_count\n",
" avg_true_train_loss = running_true_train_loss / train_steps_count\n",
" \n",
" train_losses.append(avg_train_loss)\n",
" \n",
" # Reset running averages\n",
" running_train_loss = 0\n",
" running_true_train_loss = 0\n",
" train_steps_count = 0\n",
" \n",
" # Validation\n",
" model.eval()\n",
" total_val_loss = 0\n",
" total_true_val_loss = 0\n",
" val_batches = 0\n",
"\n",
" with torch.no_grad():\n",
" for val_batch in val_dataloader:\n",
" with torch.autocast(dtype=torch.float16, device_type=\"cuda\"):\n",
" input_ids = val_batch['input_ids'].to(device)\n",
" attention_mask = val_batch['attention_mask'].to(device)\n",
" labels = val_batch['labels'].to(device)\n",
" label_mask = val_batch['label_mask'].to(device)\n",
" \n",
" outputs = model(\n",
" input_ids=input_ids,\n",
" attention_mask=attention_mask,\n",
" )\n",
" \n",
" val_loss = calculate_weighted_loss(outputs, labels, label_mask, label_weights)\n",
" val_true_loss = calculate_true_loss(outputs, labels, label_mask, scalers)\n",
"\n",
" total_val_loss += val_loss.item()\n",
" total_true_val_loss += val_true_loss\n",
" val_batches += 1\n",
" \n",
" avg_val_loss = total_val_loss / val_batches\n",
" avg_val_true_loss = total_true_val_loss / val_batches\n",
" val_losses.append(avg_val_loss)\n",
" \n",
" print(f\"\\nStep {global_step} | Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f} | True train loss: {avg_true_train_loss:.4f} | True val loss: {avg_val_true_loss:.4f}\")\n",
" \n",
" # Early stopping check and best model saving\n",
" if avg_val_loss < best_val_loss:\n",
" best_val_loss = avg_val_loss\n",
" steps_no_improve = 0\n",
" best_model_state = model.state_dict().copy()\n",
" print(f\"New best validation loss: {best_val_loss:.4f}\")\n",
" else:\n",
" steps_no_improve += 1\n",
" if steps_no_improve >= patience:\n",
" print(f\"Early stopping triggered after {global_step} steps ({steps_no_improve} validation steps without improvement).\")\n",
" # Load best model and return\n",
" if best_model_state is not None:\n",
" model.load_state_dict(best_model_state)\n",
" print(f\"Loaded best model with validation loss: {best_val_loss:.4f}\")\n",
" return train_losses, val_losses, best_val_loss\n",
" \n",
" model.train()\n",
" \n",
" # Handle any remaining training loss that hasn't been validated\n",
" if train_steps_count > 0:\n",
" avg_train_loss = running_train_loss / train_steps_count\n",
" train_losses.append(avg_train_loss)\n",
" \n",
" # Load the best model state before returning\n",
" if best_model_state is not None:\n",
" model.load_state_dict(best_model_state)\n",
" print(f\"Loaded best model with validation loss: {best_val_loss:.4f}\")\n",
" \n",
" return train_losses, val_losses, best_val_loss\n",
"\n",
"def run_training(smiles_train, smiles_test, labels_train, labels_test, \n",
" model, tokenizer, scalers, num_epochs=5, learning_rate=1e-5, \n",
" batch_size=256, validation_steps=500):\n",
" \"\"\"\n",
" Complete training pipeline for two labels with step-based validation\n",
" \n",
" Args:\n",
" smiles_train, smiles_test: Lists of SMILES strings\n",
" labels_train, labels_test: numpy arrays of shape (num_samples, 2) - ALREADY SCALED\n",
" model: CustomModel instance (configured for 2 outputs)\n",
" tokenizer: Tokenizer instance\n",
" scalers: List of 2 scalers, one for each label (for inverse transform only)\n",
" num_epochs: Number of training epochs\n",
" learning_rate: Learning rate\n",
" batch_size: Batch size for training\n",
" validation_steps: Perform validation every N training steps\n",
" \"\"\"\n",
" \n",
" print(\"Setting up datasets for two-label training (labels assumed pre-scaled)\")\n",
" \n",
" # Create datasets - no scaling performed here\n",
" train_dataset = SMILESDataset(smiles_train, labels_train, tokenizer)\n",
" val_dataset = SMILESDataset(smiles_test, labels_test, tokenizer)\n",
" \n",
" # Print dataset statistics\n",
" train_stats = train_dataset.get_label_statistics()\n",
" val_stats = val_dataset.get_label_statistics()\n",
" \n",
" print(\"Training dataset statistics:\")\n",
" for key, value in train_stats.items():\n",
" print(f\" {key}: {value}\")\n",
" \n",
" print(\"Validation dataset statistics:\")\n",
" for key, value in val_stats.items():\n",
" print(f\" {key}: {value}\")\n",
" \n",
" # Compute label weights based on training data\n",
" label_weights = compute_label_weights(train_dataset)\n",
" print(f\"Computed label weights: {label_weights.numpy()}\")\n",
" \n",
" # Create data loaders\n",
" train_dataloader = DataLoader(\n",
" train_dataset,\n",
" batch_size=batch_size,\n",
" shuffle=True,\n",
" num_workers=4,\n",
" pin_memory=True\n",
" )\n",
" \n",
" val_dataloader = DataLoader(\n",
" val_dataset,\n",
" batch_size=batch_size,\n",
" shuffle=False,\n",
" num_workers=4,\n",
" pin_memory=True\n",
" )\n",
" \n",
" # Set device\n",
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
" print(f\"Using device: {device}\")\n",
" print(f\"Training steps per epoch: {len(train_dataloader)}\")\n",
" print(f\"Total training steps: {len(train_dataloader) * num_epochs}\")\n",
" \n",
" # Train the model\n",
" train_losses, val_losses, best_val_loss = train_model(\n",
" model=model,\n",
" train_dataloader=train_dataloader,\n",
" val_dataloader=val_dataloader,\n",
" label_weights=label_weights,\n",
" scalers=scalers, # Still pass scalers for true loss calculation\n",
" num_epochs=num_epochs,\n",
" learning_rate=learning_rate,\n",
" device=device,\n",
" patience=10,\n",
" validation_steps=validation_steps,\n",
" )\n",
" \n",
" print('Training completed.')\n",
" print(f'Number of validation checkpoints: {len(val_losses)}')\n",
" print(f'Final training losses: {train_losses[-5:] if len(train_losses) >= 5 else train_losses}')\n",
" print(f'Best validation loss: {best_val_loss:.4f}')\n",
" \n",
" # Save model\n",
" torch.save(model.state_dict(), '/home/jovyan/simson_training_bolgov/regression/regression_simson.pth')\n",
" print(\"Model saved successfully!\")\n",
" \n",
" return train_losses, val_losses, best_val_loss"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "12a2b8c3-2c4d-4b1b-8cc7-930c9fe68fd7",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv('/home/jovyan/simson_training_bolgov/regression/PI_Tg_P308K_synth_db_chem.csv')\n",
"targets = ['Tg', 'He', 'N2', 'O2', 'CH4', 'CO2']"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8e1296a2-551c-48ab-aab3-fcf4b6110d75",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f7a406ecbc0>]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGvCAYAAAC3lbrBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYQxJREFUeJzt3XtcFdXeP/APSICZYOhPkCc1T8fjJW+pSZR1tHhEM0+ezKNl5THSUw+UynOs7DEyrSjzgheSzLyd5HjpJJUainjBC6KgJKLiDYXEDSrCBpTr3r8/jJENm32d2TN7z+f9eu3XC/asPbPmtuY7a9as5abX6/UgIiIiUiF3uTNAREREJBcGQkRERKRaDISIiIhItRgIERERkWoxECIiIiLVYiBEREREqsVAiIiIiFSLgRARERGplofcGVAynU6HgoICtG7dGm5ubnJnh4iIiCyg1+tRVlaGwMBAuLubrvNhIGRCQUEBOnbsKHc2iIiIyAb5+fl44IEHTKZhIGRC69atAdzZkD4+PjLnhoiIiCyh1WrRsWNH4TpuCgMhE+ofh/n4+DAQIiIicjKWNGthY2kiIiJSLQZCREREpFoMhIiIiEi1GAgRERGRajEQIiIiItViIERERESqxUCIiIiIVIuBEBEREakWAyEiIiJSLQZCREREpFoMhIiIiEi1GAgRERGRalkdCKWkpGDUqFEIDAyEm5sbEhISmqQ5ffo0/vKXv8DX1xetWrXCo48+iry8PGF6ZWUlwsPD0bZtW9x3330YM2YMCgsLDeaRl5eHkSNH4t5770X79u0xY8YM1NbWGqTZu3cv+vfvDy8vL/zxj3/EmjVrmuQlNjYWDz74ILy9vREUFIQjR45Yu8ouY29OEd77/gRuVdeaT2yHklvVmLH5Vxy+eEPS5UjhX4cv48sdZ5qdrtfrEf3Lafz7SJ7B96evahG5KRP5xbesXubS5HP4JuWi1b8jdbp8owKRmzJxtrBM7qwo0tf7LiB2z3mHLvNaWRX+d9OvyLh8U9T5nr6qxZ+/3IPxK1Jxo7xK1HnLqVBbif/d9Ct+zS+ROysAbAiEKioq0LdvX8TGxhqdfuHCBQwePBjdu3fH3r17ceLECXz44Yfw9vYW0kyfPh0///wzNm/ejH379qGgoAAvvPCCML2urg4jR45EdXU1Dh06hLVr12LNmjWIiooS0uTm5mLkyJEYOnQoMjMzMW3aNLzxxhvYsWOHkGbjxo2IjIzERx99hGPHjqFv374IDQ1FUVGRtavtEv6++ig2pufjqz0XJF1O9PYz2JzxG8avOCzpcqTwYcJJxO65gDMardHpv/5Wiq/3XcTMH7IMvh+19AB+OHYF//hXhlXLK9RWYkHSWXy6/TSqautszjepx6TVR/HDsSsY89UhubOiOLeqaxH9yxl8uSMH1x0YOMxKyMJ/jv2GMcvF3Scjl+zH5Ru3cPhiMWb/fErUecvpn5t/xX+O/YbnYw/KnRUAgIe1PxgxYgRGjBjR7PT/+7//w7PPPot58+YJ3z300EPC36Wlpfj2228RHx+Pp59+GgCwevVq9OjRA4cPH8Zjjz2GnTt34tSpU9i1axf8/f3Rr18/zJ07F++99x5mz54NT09PxMXFoUuXLliwYAEAoEePHjhw4AAWLVqE0NBQAMDChQsxefJkTJo0CQAQFxeHbdu2YdWqVXj//fetXXWXUVB6W9L5Xy6ukHT+jlBRZbzWTHu7xuj3tTo9AOBckXV36ZU1d4Mfvd6qn5JKXbx+5/wqa+YYVbP68xAAqmt1Dltu7nVpyrwGq4PLN5y/XK138Zqy1kXUNkI6nQ7btm3Dn/70J4SGhqJ9+/YICgoyeHyWkZGBmpoahISECN91794dnTp1QmpqKgAgNTUVvXv3hr+/v5AmNDQUWq0W2dnZQpqG86hPUz+P6upqZGRkGKRxd3dHSEiIkKaxqqoqaLVagw8RERG5LlEDoaKiIpSXl+Pzzz/H8OHDsXPnTvz1r3/FCy+8gH379gEANBoNPD090aZNG4Pf+vv7Q6PRCGkaBkH10+unmUqj1Wpx+/ZtXL9+HXV1dUbT1M+jsejoaPj6+gqfjh072rYhiIiIyCmIXiMEAM8//zymT5+Ofv364f3338dzzz2HuLg4MRcliZkzZ6K0tFT45Ofny50lIiIikpCogVC7du3g4eGBnj17Gnzfo0cP4a2xgIAAVFdXo6SkxCBNYWEhAgIChDSN3yKr/99cGh8fH7Rs2RLt2rVDixYtjKapn0djXl5e8PHxMfgQERGR6xI1EPL09MSjjz6KnJwcg+/Pnj2Lzp07AwAGDBiAe+65B8nJycL0nJwc5OXlITg4GAAQHByMrKwsg7e7kpKS4OPjIwRZwcHBBvOoT1M/D09PTwwYMMAgjU6nQ3JyspCGiIiI1M3qt8bKy8tx/vzdPhpyc3ORmZkJPz8/dOrUCTNmzMC4cePw1FNPYejQoUhMTMTPP/+MvXv3AgB8fX0RFhaGyMhI+Pn5wcfHB2+//TaCg4Px2GOPAQCGDRuGnj174tVXX8W8efOg0Wgwa9YshIeHw8vLCwDw5ptvYtmyZXj33Xfx+uuvY/fu3di0aRO2bdsm5C0yMhITJ07EwIEDMWjQIMTExKCiokJ4i4yIiIjUzepAKD09HUOHDhX+j4yMBABMnDgRa9aswV//+lfExcUhOjoa77zzDrp164b//Oc/GDx4sPCbRYsWwd3dHWPGjEFVVRVCQ0Px1VdfCdNbtGiBrVu34q233kJwcDBatWqFiRMnYs6cOUKaLl26YNu2bZg+fToWL16MBx54ACtXrhRenQeAcePG4dq1a4iKioJGo0G/fv2QmJjYpAE1ERERqZPVgdCQIUOgN9Phyeuvv47XX3+92ene3t6IjY1ttlNGAOjcuTO2b99uNi/Hjx83mSYiIgIREREm0xAREZE6cawxIiIiUi0GQkRERKRaDISIiIhItRgIERnlZuOvbPsdERHJg4EQERERqRYDIRVirYWEuGmJiJwKAyEiInIJDXt2ceNNCVmIgRARERGpFgMhIiN4N0lEpA4MhIiIiOzgiHaXvDeTDgMhIiIiUi0GQkRERKRaDISIrMC2Q0REroWBEBERkR14g+TcGAgRERGRajEQIjLC1hs8a3/HXr6JiOTFQIhIIRr2iktERI7BQIjICqzBISJyLQyEiIiISLUYCKkQ33AgIiK6g4EQkYgYZBIRORcGQkRE5HLYno8sxUCIiIhcA9+8JBswECIiIiLVYiBEREREqsVAiIiIiFSLgRCREW58/YuISBUYCBEZYftYYwygiIicCQMhIoVgJRQRNYsFhGQYCBEREZFqMRAiIiIi1bI6EEpJScGoUaMQGBgINzc3JCQkNJv2zTffhJubG2JiYgy+Ly4uxoQJE+Dj44M2bdogLCwM5eXlBmlOnDiBJ598Et7e3ujYsSPmzZvXZP6bN29G9+7d4e3tjd69e2P79u0G0/V6PaKiotChQwe0bNkSISEhOHfunLWrTCQZPXuAIyKSldWBUEVFBfr27YvY2FiT6bZs2YLDhw8jMDCwybQJEyYgOzsbSUlJ2Lp1K1JSUjBlyhRhularxbBhw9C5c2dkZGTgyy+/xOzZs7FixQohzaFDh/DSSy8hLCwMx48fx+jRozF69GicPHlSSDNv3jwsWbIEcXFxSEtLQ6tWrRAaGorKykprV5uIiEg+et40ScXD2h+MGDECI0aMMJnmypUrePvtt7Fjxw6MHDnSYNrp06eRmJiIo0ePYuDAgQCApUuX4tlnn8X8+fMRGBiI9evXo7q6GqtWrYKnpycefvhhZGZmYuHChULAtHjxYgwfPhwzZswAAMydOxdJSUlYtmwZ4uLioNfrERMTg1mzZuH5558HAKxbtw7+/v5ISEjA+PHjrV11l8Emd7Zje0UiItciehshnU6HV199FTNmzMDDDz/cZHpqairatGkjBEEAEBISAnd3d6SlpQlpnnrqKXh6egppQkNDkZOTg5s3bwppQkJCDOYdGhqK1NRUAEBubi40Go1BGl9fXwQFBQlpGquqqoJWqzX4EBERkesSPRD64osv4OHhgXfeecfodI1Gg/bt2xt85+HhAT8/P2g0GiGNv7+/QZr6/82laTi94e+MpWksOjoavr6+wqdjx45m15eoIdYYERE5F1EDoYyMDCxevBhr1qxxyp55Z86cidLSUuGTn58vd5aIiEjhnPF6R3eJGgjt378fRUVF6NSpEzw8PODh4YHLly/jf//3f/Hggw8CAAICAlBUVGTwu9raWhQXFyMgIEBIU1hYaJCm/n9zaRpOb/g7Y2ka8/Lygo+Pj8GHiIicD2MTspSogdCrr76KEydOIDMzU/gEBgZixowZ2LFjBwAgODgYJSUlyMjIEH63e/du6HQ6BAUFCWlSUlJQU1MjpElKSkK3bt1w//33C2mSk5MNlp+UlITg4GAAQJcuXRAQEGCQRqvVIi0tTUhDRERE6mb1W2Pl5eU4f/688H9ubi4yMzPh5+eHTp06oW3btgbp77nnHgQEBKBbt24AgB49emD48OGYPHky4uLiUFNTg4iICIwfP1541f7ll1/Gxx9/jLCwMLz33ns4efIkFi9ejEWLFgnznTp1Kv785z9jwYIFGDlyJDZs2ID09HThFXs3NzdMmzYNn3zyCbp27YouXbrgww8/RGBgIEaPHm31hiJ1sfVu0tqfcWwyIiJ5WR0IpaenY+jQocL/kZGRAICJEydizZo1Fs1j/fr1iIiIwDPPPAN3d3eMGTMGS5YsEab7+vpi586dCA8Px4ABA9CuXTtERUUZ9DX0+OOPIz4+HrNmzcIHH3yArl27IiEhAb169RLSvPvuu6ioqMCUKVNQUlKCwYMHIzExEd7e3tauNhEREbkgqwOhIUOGQG9Fx06XLl1q8p2fnx/i4+NN/q5Pnz7Yv3+/yTRjx47F2LFjm53u5uaGOXPmYM6cORbllYiIiNSFY40RKQQ7jiUicjwGQkRWYIseIiLXwkCIyAg2YiYiUgcGQkRERKRaDISIiMjlsM0dWYqBkAqxx1UiIvE4pEhlwS0ZBkJERESkWgyEiETEwReJiJwLAyEiIiJSLQZCREY4aqwxIiKSFwMhIiJyOXxKTZZiIERERESqxUCIyBq8yyRSLD3YeRBZj4EQERERqRYDISIiIlItBkJERESkWgyEiIiI7MA31JwbAyEiIiJSLQZCREREpFoMhFTIje+AExERAWAgRERERCrGQIjICJsbP1r5OzayJCKSFwMhIhExriEici4MhIgUgrVDRM7JEecuiwfpMBAiIiIi1WIgRKQQeo4XSSQa1qCQpRgIEVmBXQ8QEbkWBkJERESkWgyEiIjIJfDxsnNQ2oshDISIiIhItawOhFJSUjBq1CgEBgbCzc0NCQkJwrSamhq899576N27N1q1aoXAwEC89tprKCgoMJhHcXExJkyYAB8fH7Rp0wZhYWEoLy83SHPixAk8+eST8Pb2RseOHTFv3rwmedm8eTO6d+8Ob29v9O7dG9u3bzeYrtfrERUVhQ4dOqBly5YICQnBuXPnrF1lIiIiEonSau6sDoQqKirQt29fxMbGNpl269YtHDt2DB9++CGOHTuGH374ATk5OfjLX/5ikG7ChAnIzs5GUlIStm7dipSUFEyZMkWYrtVqMWzYMHTu3BkZGRn48ssvMXv2bKxYsUJIc+jQIbz00ksICwvD8ePHMXr0aIwePRonT54U0sybNw9LlixBXFwc0tLS0KpVK4SGhqKystLa1SaShNIKBCIitfGw9gcjRozAiBEjjE7z9fVFUlKSwXfLli3DoEGDkJeXh06dOuH06dNITEzE0aNHMXDgQADA0qVL8eyzz2L+/PkIDAzE+vXrUV1djVWrVsHT0xMPP/wwMjMzsXDhQiFgWrx4MYYPH44ZM2YAAObOnYukpCQsW7YMcXFx0Ov1iImJwaxZs/D8888DANatWwd/f38kJCRg/Pjx1q46ERGRLHjPJB3J2wiVlpbCzc0Nbdq0AQCkpqaiTZs2QhAEACEhIXB3d0daWpqQ5qmnnoKnp6eQJjQ0FDk5Obh586aQJiQkxGBZoaGhSE1NBQDk5uZCo9EYpPH19UVQUJCQprGqqipotVqDjytSWkM1JWruNXlz286NG5eIyKlIGghVVlbivffew0svvQQfHx8AgEajQfv27Q3SeXh4wM/PDxqNRkjj7+9vkKb+f3NpGk5v+DtjaRqLjo6Gr6+v8OnYsaPV60xERETOQ7JAqKamBn/729+g1+uxfPlyqRYjqpkzZ6K0tFT45Ofny50lIiIikpDVbYQsUR8EXb58Gbt37xZqgwAgICAARUVFBulra2tRXFyMgIAAIU1hYaFBmvr/zaVpOL3+uw4dOhik6devn9F8e3l5wcvLy9rVJRLwyRgRkXMRvUaoPgg6d+4cdu3ahbZt2xpMDw4ORklJCTIyMoTvdu/eDZ1Oh6CgICFNSkoKampqhDRJSUno1q0b7r//fiFNcnKywbyTkpIQHBwMAOjSpQsCAgIM0mi1WqSlpQlpiJrDgIaISB2sDoTKy8uRmZmJzMxMAHcaJWdmZiIvLw81NTV48cUXkZ6ejvXr16Ourg4ajQYajQbV1dUAgB49emD48OGYPHkyjhw5goMHDyIiIgLjx49HYGAgAODll1+Gp6cnwsLCkJ2djY0bN2Lx4sWIjIwU8jF16lQkJiZiwYIFOHPmDGbPno309HREREQAuNNoddq0afjkk0/w008/ISsrC6+99hoCAwMxevRoOzcbERHRHRyD0LlZ/WgsPT0dQ4cOFf6vD04mTpyI2bNn46effgKAJo+f9uzZgyFDhgAA1q9fj4iICDzzzDNwd3fHmDFjsGTJEiGtr68vdu7cifDwcAwYMADt2rVDVFSUQV9Djz/+OOLj4zFr1ix88MEH6Nq1KxISEtCrVy8hzbvvvouKigpMmTIFJSUlGDx4MBITE+Ht7W3tahMREZELsjoQGjJkCPQmeoEzNa2en58f4uPjTabp06cP9u/fbzLN2LFjMXbs2Ganu7m5Yc6cOZgzZ47ZPBERkQthJQ1ZiGONERERkWoxECIiIrKDI16uYAWXdBgIERERkWoxECIiIiLVYiBEZIStVd3W/oz9FRERyYuBEBEREakWAyEVYi0EERHRHQyEiIiIyGGUdjPOQIiIiIhUi4EQERERqRYDISIRudlR56uH+eFpiIhIXAyEiKygsEfbRERkJwZCREREpFoMhIisYM+jLyIiUh4GQkRGuPEhGBGRKjAQIvqdXs/GykSugjczZCkGQkRGOGqsMSIitVHaPScDISIiIlItBkJERESkWgyEiBSCbRqI7KM3+Ntxz1945jo3BkKqxNOWiEg0DuhWgz13SIeBEBEREakWAyEiIiJSLQZCREREpFoMhIiIiEi1GAgRiYgNGomInAsDIRKd0noNJSIi5VDaDSMDIaLfMYAjIlIfBkIkOqVF+7awfRVcYOWJiFSEgZAC7ckpwrcHco1OW30wF7vPFDo4R9JIv1SMZbvPoU7Hqhg10+v1WLn/Ivadveaw+VTX6rAk+RyO5920a5nO5vRVLRYlnUVFVa3Dl12krcSCnTm4UnJb+O52dR0WJZ1FdkGpw/Pj7EpuVWPBzhxcvFaOiqpaLEw6izMardzZckoecmeAmpq0+igAoO8Dvhj4oJ/wfWZ+CT7++RQA4NLnI2XJm5hejEsFALS9zwsvDeokc27Ecb28Su4sOJ3UizfwybbTAOw7rq2Zz7rUS1iYdBYLk866xLlkqRGL9wMAyiprETWqp0OX/eZ3GTiWV4KtJ65izz+HAAAWJ59D3L4LWJx8TvT94OpD1sz8IQu/nNTgm/0XMf7RTlhz6BKWSLAd1cDqGqGUlBSMGjUKgYGBcHNzQ0JCgsF0vV6PqKgodOjQAS1btkRISAjOnTtnkKa4uBgTJkyAj48P2rRpg7CwMJSXlxukOXHiBJ588kl4e3ujY8eOmDdvXpO8bN68Gd27d4e3tzd69+6N7du3W50XJdNoKw3/L61sJqVzu3it3HwicllXbt42n8gCBSWWnx9nC8tEWaazOnnF8TUwx/JKAAC51yuE71gTZLujl+7UZlbW6JAlw/50JVYHQhUVFejbty9iY2ONTp83bx6WLFmCuLg4pKWloVWrVggNDUVl5d1CasKECcjOzkZSUhK2bt2KlJQUTJkyRZiu1WoxbNgwdO7cGRkZGfjyyy8xe/ZsrFixQkhz6NAhvPTSSwgLC8Px48cxevRojB49GidPnrQqL0TGuEI7JyIiMs/qR2MjRozAiBEjjE7T6/WIiYnBrFmz8PzzzwMA1q1bB39/fyQkJGD8+PE4ffo0EhMTcfToUQwcOBAAsHTpUjz77LOYP38+AgMDsX79elRXV2PVqlXw9PTEww8/jMzMTCxcuFAImBYvXozhw4djxowZAIC5c+ciKSkJy5YtQ1xcnEV5ISIicgZ8q1U6ojaWzs3NhUajQUhIiPCdr68vgoKCkJp6pz1Iamoq2rRpIwRBABASEgJ3d3ekpaUJaZ566il4enoKaUJDQ5GTk4ObN28KaRoupz5N/XIsyUtjVVVV0Gq1Bh9XxNoO23HbERG5FlEDIY1GAwDw9/c3+N7f31+YptFo0L59e4PpHh4e8PPzM0hjbB4Nl9FcmobTzeWlsejoaPj6+gqfjh07WrDWRESkBHpWm5AN+Pp8AzNnzkRpaanwyc/PlztLpCJ6sBAnInI0UQOhgIAAAEBhoWE/N4WFhcK0gIAAFBUVGUyvra1FcXGxQRpj82i4jObSNJxuLi+NeXl5wcfHx+BD1BCfjBERuRZRA6EuXbogICAAycnJwndarRZpaWkIDg4GAAQHB6OkpAQZGRlCmt27d0On0yEoKEhIk5KSgpqaGiFNUlISunXrhvvvv19I03A59Wnql2NJXpSuaT8YrDEg18OjmpydI26Q2D5ROlYHQuXl5cjMzERmZiaAO42SMzMzkZeXBzc3N0ybNg2ffPIJfvrpJ2RlZeG1115DYGAgRo8eDQDo0aMHhg8fjsmTJ+PIkSM4ePAgIiIiMH78eAQGBgIAXn75ZXh6eiIsLAzZ2dnYuHEjFi9ejMjISCEfU6dORWJiIhYsWIAzZ85g9uzZSE9PR0REBABYlBel44HvWLwgy0SkDc/2IURkC6tfn09PT8fQoUOF/+uDk4kTJ2LNmjV49913UVFRgSlTpqCkpASDBw9GYmIivL29hd+sX78eEREReOaZZ+Du7o4xY8ZgyZIlwnRfX1/s3LkT4eHhGDBgANq1a4eoqCiDvoYef/xxxMfHY9asWfjggw/QtWtXJCQkoFevXkIaS/JCZByjUCJSMgb+YrE6EBoyZIjJOy83NzfMmTMHc+bMaTaNn58f4uPjTS6nT58+2L9/v8k0Y8eOxdixY+3KCxEREakX3xpzKqylICL78Q1FccndjIFXBvswECIi1WFzIiL5KO38YyBEREREqsVAiIhkxcc0JAW5H1dJTWm1Ks6MgZCCufh5TEREKqS0IJWBkFPhLQAREZGYGAgpmFRRs8KCcVI5sar4eZtARLZgIERkhNKqbomISBoMhEh0bMRHRCQtFrPiYSBE9DuOVUVEpD4MhEh0rvBYyQVWgYiILMBAyKnw8kyuh/VwRPZxhZtPOTEQUjQe3UQkPj4FJrqLgZCCnLxSitzrFSZSNF96FZTcRsblYouWk3LuGm5V11qZO3U6W1iGHE2Z8L81d16F2kocybVsn5D1tJU12H/uGup0vKorRfqlYlwtvS3Z/LMLSnHhWrnd89Hr9Th0/jpulFeJkKvmndFoca6wrNnpR3KLUaitlDQPYtLr9Th4/jqKK6rlzoqoGAjJJPXCDfSfm4Rfsq4CAIq0lXhu6QEMnb9XSGPNRffxz3djzPJUnLxSajZtfvFtvB1/3Nosq05lTR2GLUpBaEwKKmvqrP590GfJ+NvXqTh6ybJgyI01gFYZ9/VhvPrtEXyz/6LcWSEAx/Nu4sW4VARH77b4N9bUTN2sqMbIJQfwzIJ9NuTO0PYsDV5emYYhDcpbsZVX1WJ4zH7896IU1NTpmkxPu3gDf/s6FUGfJUuWB7ElZF7BhJVp+O+F9u8DJWEgJJOXvjmM4opqvLX+GPKLb+Fy8S1R5ns8v8SidMlnikRZnhiUWk1fXlVr9G9rpV28IUZ2XJat+//0VS0AIOH4ld9nZMUybVskmZB+6aak879aKl7NSfLpQgBAWaU4NePGbmFuNqg1MRYIHb5oXW2xEm6Tdmbf2W43WCNEYisoka4qmSzHiyORY7GRLykBAyEiIiJSLQZCRCQrPeviSAKuXtnEDmDFw0BIwVz9RCYiItswDBIPAyEihWDNCBGR4zEQIvqdZTXNrKcjcna85aCGGAgpBB/3KosbX2chcllsX0MNMRBSMF6MSQ3Euibx0aLlnHFLKXn/yl1WO6ozVleNHxkIuShL73isuTPiXZTlGm4ruQvJenLuP6UcO0rJB5GaNSwSlXBOMhBSCDEPhkJtJR6LTsbCnTkm021Kz8eAT3Yh04LeqG9X1+HpBfvw3vcnRMqlstkTupwvKsOjn+4SLS9iiNyYiZCF+2waKsRen/9yBo9/vluycZ0sPXXyi29h0GfJiN1zXpJ8yMGSIXXURP5LKllr3IrDsgdDDIRc0NLd51CorcKS3aYL/He/P4HiimqErz9mdp7bsq4i93oFNqbni5VNxWt4bloTGM1KOInr5crqgv6H41dw4VoF9sgwtErcvgu4WlqJlQdyjU53VBH45Y4cXCurwpc7TN8gOJN/bv5V7iyQjRRSUWwVKR5PHsktxjWJB781h4GQgtl0nuj1kGIwbrkjdjnYetKrcFM5BVfcLUo61mw5X+TKv4I2G0H+AacZCClcbZ0OeTfEGZC1OVdcdKwznU6PS9crzAZx1bU65JsZ9NZR7Xyqausk3x83K6pRcqsal29UQGciaq6tM79dnJUjL8D5xbdQa2TQTXMqqmpRpBVvoFFXotdbdm67soarruSG5MYobbcxEFK4Kf/KwFNf7sG2E1clXc7eHOWMRi+Wj37KxpD5e7Ei5aLJdGOWH8KT8/YgLVf+UeJHLjmAJz7fjV8taLdli+o6HR6Zm4R+c5Lw5y/3YoaJNl+T1hzFk/P2YEe2RpK8GHMsT9oRzB0t6VQhnpy3BxNXH7H6t/3m7MSgz5IZDBkx+/dz+2sz53ZzlHYhJnkxEFKI5s7L3b+36Vh10Hj7CrHEp+VJOn85/OvwZQAw2yYk6/cGp//J+E3yPJlzvqgcAPDzrwWSzP9Go7ZL/znW/DrvP3cdALDm4CVJ8mLMj8evOGxZjrAu9RIA4OB564Psmro7pYKrBYdiWJt659yel3hG5pyQKxA9EKqrq8OHH36ILl26oGXLlnjooYcwd+5cgypMvV6PqKgodOjQAS1btkRISAjOnTtnMJ/i4mJMmDABPj4+aNOmDcLCwlBeXm6Q5sSJE3jyySfh7e2Njh07Yt68eU3ys3nzZnTv3h3e3t7o3bs3tm/fLvYqOwzvYoiIiMQleiD0xRdfYPny5Vi2bBlOnz6NL774AvPmzcPSpUuFNPPmzcOSJUsQFxeHtLQ0tGrVCqGhoaisvFsFPGHCBGRnZyMpKQlbt25FSkoKpkyZIkzXarUYNmwYOnfujIyMDHz55ZeYPXs2VqxYIaQ5dOgQXnrpJYSFheH48eMYPXo0Ro8ejZMnT4q92pJwxrcKAAZsZCWRDhged6RUcjcGFournmOiB0KHDh3C888/j5EjR+LBBx/Eiy++iGHDhuHIkTvPyPV6PWJiYjBr1iw8//zz6NOnD9atW4eCggIkJCQAAE6fPo3ExESsXLkSQUFBGDx4MJYuXYoNGzagoODOI4P169ejuroaq1atwsMPP4zx48fjnXfewcKFC4W8LF68GMOHD8eMGTPQo0cPzJ07F/3798eyZcvEXm3lcNboSQFc9BwnF+ZsjWTt4WwXYWfLr5qJHgg9/vjjSE5OxtmzZwEAv/76Kw4cOIARI0YAAHJzc6HRaBASEiL8xtfXF0FBQUhNTQUApKamok2bNhg4cKCQJiQkBO7u7khLSxPSPPXUU/D09BTShIaGIicnBzdv3hTSNFxOfZr65TRWVVUFrVZr8HGE5s6XxjGNnDGONee0s8ZiBv0GNbMOzrpu9ZSYf14vyNHEPubkOK0Meq93kRonuYgeCL3//vsYP348unfvjnvuuQePPPIIpk2bhgkTJgAANJo7b6D4+/sb/M7f31+YptFo0L59e4PpHh4e8PPzM0hjbB4Nl9FcmvrpjUVHR8PX11f4dOzY0er1t5Wxu4dC7d1OpnI0ZYq5w8jRlOF43s1mX12V8nV/vV6PMxotamx4HZlcky21IheulTf57krJbRRXVDv9MVZWWYNL1yuE/6+VVUFTavjmmZpfOydqTPRAaNOmTVi/fj3i4+Nx7NgxrF27FvPnz8fatWvFXpToZs6cidLSUuGTny9vL8ozf8gS/i6vqkX8Ecve7JK6jAuNScFfvzqEuH1NX129dL0CBaXmX/e9XX13qAdrOoD8Li0Pw2P2463vMiz/kYWUWFsiNl7/7mg8rExxRTWe+Hw3+s9NwppDlzA8Zj/ejj8uT+bs9OinuzBk/l6cLyqHTqfHo5/uwmPRybhVXSt31qgBFRQ3TkP0QGjGjBlCrVDv3r3x6quvYvr06YiOjgYABAQEAAAKCwsNfldYWChMCwgIQFGRYb82tbW1KC4uNkhjbB4Nl9FcmvrpjXl5ecHHx8fgoyT1rzNLwZYgYPnepkN4HL5o2WvCRWV3g6VaneV33t/uvxN87TrtgH6PbBxig5zPucIy4e/6fqcSHdh/kpgqa+6cT4cuXEddg8i3YQ2z2jm6RsxV2nK5xlo0JXogdOvWLbi7G862RYsW0P1+sevSpQsCAgKQnJwsTNdqtUhLS0NwcDAAIDg4GCUlJcjIuHvXv3v3buh0OgQFBQlpUlJSUFNTI6RJSkpCt27dcP/99wtpGi6nPk39cpTEVU4UJeKWvcuWbcFjkywhdTsVZ6uxdbb8yknuMkb0QGjUqFH49NNPsW3bNly6dAlbtmzBwoUL8de//hXAnaEKpk2bhk8++QQ//fQTsrKy8NprryEwMBCjR48GAPTo0QPDhw/H5MmTceTIERw8eBAREREYP348AgMDAQAvv/wyPD09ERYWhuzsbGzcuBGLFy9GZGSkkJepU6ciMTERCxYswJkzZzB79mykp6cjIiJC7NUmF6CkcouhBzkbuS9masOtLR4PsWe4dOlSfPjhh/if//kfFBUVITAwEP/4xz8QFRUlpHn33XdRUVGBKVOmoKSkBIMHD0ZiYiK8vb2FNOvXr0dERASeeeYZuLu7Y8yYMViyZIkw3dfXFzt37kR4eDgGDBiAdu3aISoqyqCvoccffxzx8fGYNWsWPvjgA3Tt2hUJCQno1auX2KutMDxFiNTA2dt8MXgiJRA9EGrdujViYmIQExPTbBo3NzfMmTMHc+bMaTaNn58f4uPjTS6rT58+2L9/v8k0Y8eOxdixY02mcSlOWDIqNcsKzZbTaq7GTaz976r7S4rzQ+3bylXXX2pKLavtxbHGSHZKaZRqaoR5Pu+XjhJe5ZY/B+pkTbsiBRwm5KIYCBEACwokCQuha2XKe5tFzIafDKKIiJSLgRAREakLa5dk1WTUBJlfVWEgpBQKPzHV0KhRCY9oyHrcbSQ32Wt95V6+k2MgpBBiluW8MNhPjoKN+43E5AYeU0ome/BEAgZC5PIsrekx1VhaSGNvZiwk1XJsqfVS28XUmdbXVFZNTnOidZSCGmq4yXIMhIgs4Ohn2CymHUsNgQErIIiMYyBE9LvGFwo1XByVQAmbmTUErseSGl5HkeRGSpZD1jXPEwZCBIDPqwFXPcWVT7QOFbkDSUXkONxd9RxjIORqZI5oXPQ8IRXhTYFtnOki6Yi8OtP2kJvcNbIMhBTAGU4Yi7uuV+C6yF1FLncfGeTcFHhKUSOOOMflLsdcGQMhIiIVYEBFZBwDIVejxCoZJyV3dS2RvZReiSDXOcZikhpiIKQQYp6YPMltY/Ka8ftEVk9LS7bt66TnDHtDJ2ektMOWgZBCiHlnZMu8XPn6bvHFwoW3QT2dLR0qirTs5o4xe+evsDJVMdiztHqooOiSFAMhonq8aBBcJ3hwkdVwWaxdVg4GQkQyaraWRKKrGN9gUy/ueSLjGAgRWYA3b9JhOxfHU/sWd4UXIeQ4b5x/qxnHQIjICAY+6uKqBTwRmcdAiCyiigtFo+DHFSsqXOFOWAquuK+peY7e365y3klVCyX3I3sGQuRUXKM4IRKHks4H1qIa4vZwHgyEFELuO1JHR+Ryry8REcmjcZAod40ZAyGyCAMXInk4y7knRz5NvYLu6hUyTnJYOAUGQmQzZ+kHw9ICQ+7n1A0patOqrMQVc9vLeY64Qf47bSJnwEBIIcQsruS8g2TBS47G1+/JWo4+YpR0k0VNMRByMXJfElzpmiTnqki1HV1p/4ipYQDvKtvIGVZDrm0t+nJtiHPErXkUb16mOMMxZQsGQkQW4P2cdMS6KJmrjVR7zZGiHrcSKQgDIRdzp12AjT80QQ2PvNSwjuRirDhklRgHMjizXcP9qcR960wYCBEZ0biRq7M0DFcytpNwPFfa5s52sXe2/KoZAyEF0EOv+mp7V8YYihSH5Y2oHHGKsxiRjiSB0JUrV/DKK6+gbdu2aNmyJXr37o309HRhul6vR1RUFDp06ICWLVsiJCQE586dM5hHcXExJkyYAB8fH7Rp0wZhYWEoLy83SHPixAk8+eST8Pb2RseOHTFv3rwmedm8eTO6d+8Ob29v9O7dG9u3b5dilQnA2cIyzEo4Kdvy16VewoKdOTb/vvHds63BacmtGpt+p/RLU3lVLd77/gRSzl4Tdb5KeCTZ3K5elHS2yXdnNFpEbspEfvEtiXNFDS3bc858IpnU6Rx7DCeevIrbNXUOXSbguvGz6IHQzZs38cQTT+Cee+7BL7/8glOnTmHBggW4//77hTTz5s3DkiVLEBcXh7S0NLRq1QqhoaGorKwU0kyYMAHZ2dlISkrC1q1bkZKSgilTpgjTtVothg0bhs6dOyMjIwNffvklZs+ejRUrVghpDh06hJdeeglhYWE4fvw4Ro8ejdGjR+PkSfku1q7sha8Oybr8qB+zsXT3eZwtLDP43tI7KUtqbiyZV06j5ZviTAXL0t3nsDE9H6+tOiJ3VkTX3G5YnHwOeTcMA56/LD2IH45dwRtr05v51V28ixdHUVkldmQXmk0nV1CdfvmmQ5f35nfHHLo8Vyd6IPTFF1+gY8eOWL16NQYNGoQuXbpg2LBheOihhwDcucuOiYnBrFmz8Pzzz6NPnz5Yt24dCgoKkJCQAAA4ffo0EhMTsXLlSgQFBWHw4MFYunQpNmzYgIKCAgDA+vXrUV1djVWrVuHhhx/G+PHj8c4772DhwoVCXhYvXozhw4djxowZ6NGjB+bOnYv+/ftj2bJlYq+2y8su0JpNU15VK8qyDp2/Dk1ppfmEFuajYdF46Px1XC29bfO81ejIpWIAwG83Ld9upbdrsOdMEWrrdFJly2Fu1dRi/7lrKCq7c0xW/75ODQPe0ts12JMjzvqevqrFKQvON3OcLQjbfaYQlc3UclTV2LddzxeV49f8kgbfONEdCElO9EDop59+wsCBAzF27Fi0b98ejzzyCL755hthem5uLjQaDUJCQoTvfH19ERQUhNTUVABAamoq2rRpg4EDBwppQkJC4O7ujrS0NCHNU089BU9PTyFNaGgocnJycPPmTSFNw+XUp6lfTmNVVVXQarUGHwK0lTWIT8tzyLL2n7uGl1em4bHoZNHnffD8dby8Mg3B0btFn7ezsLX4N7yImDfu61RMWnMUX6dctHGJyrEzuxCvfnsET3ze/HEz7utUTFpt//pW1tRhxOL9eHbJfuE7e2o5lPDY0VKvr0nH+/85Icm8Qxbuw/OxB4Vg1plqYus5YZadhuiB0MWLF7F8+XJ07doVO3bswFtvvYV33nkHa9euBQBoNBoAgL+/v8Hv/P39hWkajQbt27c3mO7h4QE/Pz+DNMbm0XAZzaWpn95YdHQ0fH19hU/Hjh2tXn9byX2Qm7p7vFFe7bB8pF64Idm8D1+0f95qbficaWUgdEZzp7bkx8wrEuTGkNTnzr7f20TV1DW/JLHWt0KkWlU5iLEfEjILRJhL865YUatJTUl2rsl8ARQ9ENLpdOjfvz8+++wzPPLII5gyZQomT56MuLg4sRclupkzZ6K0tFT45Ofny50lmzjqbodvuknHme7k7WX3YaQXaT5OyNQqq3BzOBVX6trA2YkeCHXo0AE9e/Y0+K5Hjx7Iy7vzaCUgIAAAUFho2PCtsLBQmBYQEICioiKD6bW1tSguLjZIY2weDZfRXJr66Y15eXnBx8fH4KMWW09cRcjCfYq9Iz1bWIbFu87hVrX5NyXEuCCyiCJXI2dt5rrUS/ItXAXScovlzoJ9ZC5wRQ+EnnjiCeTkGL7CfPbsWXTu3BkA0KVLFwQEBCA5+W4bEK1Wi7S0NAQHBwMAgoODUVJSgoyMDCHN7t27odPpEBQUJKRJSUlBTc3dV5WTkpLQrVs34Q214OBgg+XUp6lfjqIo4PbtfFE5Pv45W+5sGDVsUQoW7TqLa2VVki3D1nOx8VtqLkuq8c+kma1VWLspnV/zSxD1ozLLFSJAgkBo+vTpOHz4MD777DOcP38e8fHxWLFiBcLDwwHc6aF32rRp+OSTT/DTTz8hKysLr732GgIDAzF69GgAd2qQhg8fjsmTJ+PIkSM4ePAgIiIiMH78eAQGBgIAXn75ZXh6eiIsLAzZ2dnYuHEjFi9ejMjISCEvU6dORWJiIhYsWIAzZ85g9uzZSE9PR0REhNir7TIc/RqoKzAXnCmpdonXe3K0qybeAJXyeFRrez6ynofYM3z00UexZcsWzJw5E3PmzEGXLl0QExODCRMmCGneffddVFRUYMqUKSgpKcHgwYORmJgIb29vIc369esRERGBZ555Bu7u7hgzZgyWLFkiTPf19cXOnTsRHh6OAQMGoF27doiKijLoa+jxxx9HfHw8Zs2ahQ8++ABdu3ZFQkICevXqJfZqKwavc+JpWEizTCVH4PnrGNzO1JDogRAAPPfcc3juueeane7m5oY5c+Zgzpw5zabx8/NDfHy8yeX06dMH+/fvN5lm7NixGDt2rOkMk0mOfGyglLu4xvmQKl/NzVeqhpSO3r5sEEpKUj9mIB+FUkMca4wURZwLp2EhZ2mZp4ai0dHlv1ICW3PE2ixKCvxM5UQNx7qSOMt5oFYMhFyQPa9e83x1bWp6LV8sSj4nWLPhHFxlN7nq8cZAiAy45mFuGVsveEq+UIpFjDva5uYhVtlq12xM/Nia+Srtzt+R1y2FrbrslHYsUPMYCLkYnnuOo9frMWn1EbyzIdPq33654wyeW7q/2bGVpKq5sefC6Kq1SZvTld1xqql9VqfXY/yKVMz8wfzQFC56M+9wqw7k4r8X7kOR1vbxEElZGAgphKgXGRZ4DpFXfAt7cq7hern1fRvF7rmAk1e0+D5D+iEolM7eY9/ew33G96aDCEfeXBgLVkytX37xbRy+WIx/H1F2MGcvsWtX7Dlm5mw9hXNF5Viw86xo+SF5MRBSCCXfrTkia9W1d0aXdqbqZJ0IG6ZOd3dU7YIS5Y6DVF2rk7Qzy3rXbAgqxWZNYKYx0UeOmApKbqPOygPOVGpNaSWKKxwzhqCSzmkxs1JTpzOfyAQlbRfZudpYY2QDBQdBjjLy99G2RXlnzEm357BFKXJnoVmfbDuNo5ek72xz24mryLtxS/LliOWx6GT8auWAtNZKPl2Ixz/fjX/8K8N8YhMaXniLyqrQf24SSm/VNP8DKynitGuQCVPlgK1lhDVDhThrOaRGDIRIFo3LiHNF5bLkoyFH9xUkB4f3I2TDAvfkFJlP5EDmrmdbjkv7ePPH30dk33W60ExK62UXlIo+T1f2+S9nZFu2gooRl8NAiOh3SuoDhhzLVRuCE5F5DISILGAsSHLGsMnhHSo6dnGicJWA2DXWgkh6DITIgOyFp4zPkVgrQMY49K0xlR2DbEdDSsBAyMU4slyxpf2HI4ixDdzgxkLaQUTbzhLtMGsO88bnhEJPEacjVllTPxtbjxS1705XLRMZCCmEkg8wJedNSg3vznlBcxw5trUUbxg5A7lXzdnOK6Xe/Dk9mTcrAyEyqbii2qH920h1Puj1epzRlFmeDwsyImWZaMvFN/d6BcqrasXPjINZu1nv7FstaurkvqybzvudPN7pe6b0Vg3yi52nmwB7GNsm1oxZlXfjFrS3xXvN39rlOxspjy1XfXTrIXcG6A4xDy8x59V/bpKIc5PPmkOXkHTK9OvHljSSVWpD2lMFWjy7ZD98vD1wYnao3NkRWBIs2ttR46UbtzA8Zr9d83DEdXF4zH483b09Vv39UfSdsxMAkDrzaXTwbSn9whXm2wO5eOPJP5hNl198C099uafZ6bKejcosClR/bNmCNUJkwDXjfeCblIuizEepNeP1fe9oK5VVI2TJ9jpVoJU+I1aQ8q539xnDPpJ+zZeuHx8ln8srLDwfj+QWS5wT+UhdlEh5bLkaBkIuyJmrfcUINGxdfck6VLShyFNqwKVG5vaFqelW70YJT125ajOdtzRqiqela2IgRPQ7J44fnYLFFxGFRYHmjgulPi61hNqOebv3lVvDPy2fl8IOaWqEgRCpQoFIg2N+sCVL+NvSgjD+SJ7Vy1lz6JLR7xNPajA27hB+u2lbY8gNR63Pi6PxmiEOS7fj2kOXMGHlYdyqtu+xqphB1b+P5GH8ilRoK8VtJG1MRPwxs7Xoer0ekZsyUdbg0fN/jv2Gbw/kYszyQ1Yvs7KmDtGNhus4W1iGMcsP4eD561bPz5wPE07i3e9/FX2+9WrrdAhbcxTLdp+zbQYcdJWUhBeh5t2sqMaJ36x/7p57vcLq3zRXLr/5XQaOXrqJD7actHqeAJBfrLwR7hu3yamsqZMpJ/ZT8p2/sbZPeujx0U/ZOHj+BtalXnZYXsxtp5k/ZOHwxWJ8tfeC5HnZeuIqss20U8svvo0fjjUdU27u1lPIuGz9YMTG5jVlXToyLt/EhJVpVs/PlFvVtfjX4cvYlP4bCrXi3BA2tvNUIZLPFGH+zrOSzF9qDIQUwpnb9YhJzscM5grnOhH2UZ1OL8q+LhX5dWKpWLI/63TyH/umcmBdh4p2Z0U2txTY9UKFg/JUa+YYrNHpRF2esdq3G+XVoi6jXsNVq9PpUVuns7kMau5nt6utu3lR2uNkBkIuxpq+csixaup0GDp/L15oUJX+HyN3ho5Wcsv6AtjSgtRcYLA5PR/H8kqsXr7rkDYI5P2VcXJvl2N51tciieHmrWo8MicJUzdkyrL85qTJ/HYgAyEXE59mXxsQuctNW++o6zuqA6yrXQtff6zB76xbprV5zdGUIa/4Fo43uPAXV4hzF2hPTUTCceuDsdGxB0WpyZnx/Ykm3zlb7732ZPfN747hbOHdmxdzW/TDBNseiQLA2kNNH31JFRDUn1elt2rwj39lNJluaY2A3AGLVLZnaWRZ7sglB1BWVYuffi3A9xm/yZIHY/65Wbr2S5ZgIEQuIf3S3Tssa8rObVlXjX7vXJdix/v1t1LkuGjto6Or7d//T9NgsDn/Omx7O55VB3NNThcz5qg/r75LM51fc4GO2H06NRe0qvF8FzP4cPZ4lYGQQiilZ2lnLRDEKDAbF5KKvhtVdOacj5xt9BTQRAqANIdUc9tV7ko/a8sLe7eNnKermMd2c7Ny9jauDIQUwJ5DSK/X2z1EgRpZ8lpuw/3i5ua8QaKlrpVVOX2BJgY5x1PSiXnRsuO3tXU63LTysa3cwY2rc/btq+TyhYGQk/siMQePfrpL7myIxuZz3crzq8/snU3eSDHfg7BySyJ7H+fsOlWIRz/dhchN4j6rV+4WMyRWLaq9++GNtel2/V4sf1l2EI/MTbKp6wcxKe3tIkm58KpuPJqHRz/d1aTvJKVgIOTk4vaZ7mcj7eINq+Yn98XekUNsnC8qt39hDnCzohoHz1+HTsJnKEt+7whtixUNp51tJOrfbtrWh5Ijb2LN9WdjDXtOpVNX7+RjezNt6BzF2mMs34J9XF2rw8HzhuWi2MXesbyb+K1EmhHglUav1yP1gunrzNytpwHcHWOu8X6V+x6To88rhFSF7bgVhxE/OQiPP9TOwnw418XNmdi6aUcs3g+NthLzXuzTbBq5C5JmKShjmfklksxXQatoNb3B344796XaZMZ6eW5cpn25w/paCWv28fmicrzwlfW9TTurn09cxQ82vHmqJKwRUgFz0Topm+b33mATT9595daVw1WlxRVq6VDRkfdAltY8S5Gn7w5LO8xMdoGyRn0X90WcpnPbdarQ7vnK/QiUgZALUmOljuir7Nb4X7lPVZIL97zrM7eP1VimqonkgdDnn38ONzc3TJs2TfiusrIS4eHhaNu2Le677z6MGTMGhYWGUWVeXh5GjhyJe++9F+3bt8eMGTNQW2vYuHXv3r3o378/vLy88Mc//hFr1qxpsvzY2Fg8+OCD8Pb2RlBQEI4cOSLFaroMKc/31As38Ozi/TiSW4yXvzks4ZIcw9q7fykfPdhzqbY1V5ZcHH5t9Dhq39lreHbxfpy8oqy7ZkfadDTf4H8pzzlzx5wjXq12BlLX5BWU3saopQfwwzHHdWJo6zq9+/2vCLdgIFqr8iLanKQhaSB09OhRfP311+jTx7Btw/Tp0/Hzzz9j8+bN2LdvHwoKCvDCCy8I0+vq6jBy5EhUV1fj0KFDWLt2LdasWYOoqCghTW5uLkaOHImhQ4ciMzMT06ZNwxtvvIEdO3YIaTZu3IjIyEh89NFHOHbsGPr27YvQ0FAUFRVJudqKo5QC6qVvDuPUVS3+9nUqrjYzGrwYjbVtDziUfro6v4mrjuDUVS0mrTkqd1YMmDpH7AlgjR3P7zbuQFEpJ6gTcpYt9/HPp5B1pVT0tzLFVllTh03pv2Hbias2v1zgjCQLhMrLyzFhwgR88803uP/++4XvS0tL8e2332LhwoV4+umnMWDAAKxevRqHDh3C4cN3agl27tyJU6dO4bvvvkO/fv0wYsQIzJ07F7GxsaiuvtO3RVxcHLp06YIFCxagR48eiIiIwIsvvohFixYJy1q4cCEmT56MSZMmoWfPnoiLi8O9996LVatWSbXa5MTMvz7vmHyogdZJBo21RMNgx9kOEX0zfzubHE2Z0YFM5dBwyJR6DbvqKL1l/NhX2rEjZp9W5shdtkoWCIWHh2PkyJEICQkx+D4jIwM1NTUG33fv3h2dOnVCamoqACA1NRW9e/eGv7+/kCY0NBRarRbZ2dlCmsbzDg0NFeZRXV2NjIwMgzTu7u4ICQkR0jRWVVUFrVZr8FEdJy0NbTlnHd2TtJjzFzuvSqqUkLtQVCtjx4Az7IuUs9cQGpOC4TH7jU539LEdu8d0lyZ95+w0+r25bNq6HlKvv0XHiMKPI0len9+wYQOOHTuGo0ebVn9rNBp4enqiTZs2Bt/7+/tDo9EIaRoGQfXT66eZSqPVanH79m3cvHkTdXV1RtOcOWP89cno6Gh8/PHHlq+oqJTRo6y63d1yxhpPNv5O7j6XGlJQVpxe4wuHuYa03PTWs/R4taQs+/nXAgBAXrH5fnvkOk/YLYmyiV4jlJ+fj6lTp2L9+vXw9vYWe/aSmjlzJkpLS4VPfn6++R+JxBnPE1c/uV19/RpSUiAlz2Y3sVAFbRtHk+qNufrjzWz7K/Wcgk5BqnNT7lNM9EAoIyMDRUVF6N+/Pzw8PODh4YF9+/ZhyZIl8PDwgL+/P6qrq1FSUmLwu8LCQgQEBAAAAgICmrxFVv+/uTQ+Pj5o2bIl2rVrhxYtWhhNUz+Pxry8vODj42PwcQXO1gMwGWcqMHO2V7yVfEQ2CQqVnFkiiYgZ9Ci9dBI9EHrmmWeQlZWFzMxM4TNw4EBMmDBB+Puee+5BcnKy8JucnBzk5eUhODgYABAcHIysrCyDt7uSkpLg4+ODnj17CmkazqM+Tf08PD09MWDAAIM0Op0OycnJQhoyQuYj1taaCYNgz+YT2HDhYl//lHo9VVoh5a60DJljMNiYk2Xe4LRR4BHqZJvT1Rk7QlxhF4neRqh169bo1auXwXetWrVC27Zthe/DwsIQGRkJPz8/+Pj44O2330ZwcDAee+wxAMCwYcPQs2dPvPrqq5g3bx40Gg1mzZqF8PBweHl5AQDefPNNLFu2DO+++y5ef/117N69G5s2bcK2bduE5UZGRmLixIkYOHAgBg0ahJiYGFRUVGDSpElir7brsKIslKKNjFJrNtzcoKgz3tmut9aQo+2VWHe/Tr1bJGgsbW67mj3fHRSbSX3IWbIaznrsKKmtpK1k6Vl60aJFeO655zBmzBg89dRTCAgIwA8//CBMb9GiBbZu3YoWLVogODgYr7zyCl577TXMmTNHSNOlSxds27YNSUlJ6Nu3LxYsWICVK1ciNDRUSDNu3DjMnz8fUVFR6NevHzIzM5GYmNikATXddaOi2qbfaSud73XoTenNtwH7PuO3JoOcNj7fHX36p+UWC38rqflSobYSG47kobKmTpT56fV65GjK8GPmFWW00zKzo7Ov3H27NDO/xOrOIsVcw8bD6Viz+Q5euI4D564bfCfVMe7IG56Gm2Dj0XzcFuk4dRoWHAPlVbX495E8m8t/ayntxROHDLq6d+9eg/+9vb0RGxuL2NjYZn/TuXNnbN++3eR8hwwZguPHj5tMExERgYiICIvz6oqsKQxLbezfZfqGTJt+JydTYw59kXgGhdq7nT6KcZrae1G/Vd18AW5POaKHfYHV88sOQqOtxBlNGWb/5WHbZ9RAaEwKAMCn5T0Y2q29KPOUyoHzhsHDc0sP4NLnIx2ej9o6HV6yo8f2k1e0eOXbNGR/HGo+sYWUVlmwLvWy0e+VWhPtKFEJJ/HD8Svo0q6VJPOXO9Axh2ONkSiSz8jbW7cYFQeNz9X0y8XGEzqBg+evI0fTtGM3KdQPCrvm0CXU6SzcEXpgR7bGbLJTBa7fl5defyeI+SXrql3zqbV025thKuB2hAwrzzsx1tr8ddq+pSihYtOUX34f0Dn3eoXwXWK2BrV1OrO/3Xf2mmT5chQGQiQpOR5tKLzMkdyFa+WYsDJNqFUxx+LgpRFju9bU48aGqut0+Me/MoxOU/rdoxTWHLqEt9Yfc/hyxWwgbc28TO3iMcuNd3hLjvX5L2earUGrl3H5Jood9DhNSgyEFECvd92L95RmLnauwPpBVx3jfFG5Vek/2XZatGXvP2f/3aEK4yDslqlG1WxjZon2haWzVc6bbPIflDbvCzuyvtdMbU/WbyUWzcdckwu5ty4DIYUQd/gFw5nJWZQknSo0n6gB21+ft1/jRTdp0CfCMsSinAuE+OR4jOC6W9N6YgY/Sn8kpArcB2YxEHJBznzcyxlsmNtuzvLIRoxx1yThwtvPGZepFpY8nlfE6/NOcn5IwlUHXSUiQ1Je7AwLUcdcVY3VSon99o2j2pi5QiAixTrYuz+l74eImmPNtmluPzX5Wm/yX6fFQIhcjitc1KzlSheE5gplvV6PqlrX7ANGqZUBkrUREnHGjjnf7VyIkxZKjXeTGI/ka+t0Nr+gIRUGQuQSpKg5MFdWu1LfI85QTk/bmIlusxJxpeS23FkRlR562ba/uONJWX8+iHFhdZX2cmKXYb/dtP88kaKEGzJ/b5NzWO6SlIGQCjjDRa6enHfG5hYt98nakKl9Kuv+lnAj/ZhZAABYf9j0K732ErMHcUceM8YCAqWe+pZuF0eVB1Lf1MixH/71+3mitEBRjABNbAyEiCwgTlW+sgokZ+CooE7Oi4XSblTEDAnsXTelbRtyTQyEFEJpUTs1GlRctlxYz1FHkrGLlDNtJ0s5y5kpVtDgkPW18EDRibBSzrL/xCbGozZzN4CuEqgyECJFsbWK2hHnY5NHJgq66jfMi6sUTiQ/e2tClXSOmGI+n/atiCXnpNivzztTMSB31wEMhFTAWWub5iWeQVGDgU8tJdb6/vqbdaOImyPp6/PNfP+dhe1psqwcMR1wzEXOOY/cuxxZvtuyrYz9xpIsH8ktxuJd5xT39o+tzK+za6xnY5pS0+Wrk8SxdmMg5Ipc5Jz9au8F/I+F4y8Z9KIj0fo3rq2Ss+bF0mXPSjiJvBu3pM1MA2Lc2Smt8FVafiwmchRW8/sAnHq9Hn/7OhWLdp01GFvOWW+4XFV9GWGqrHhj3VGT82jy+ryL7mIGQgrhqgeYtZqOAH9Tnow4scYXpMO5N6RZjkzHrOS9AIuwXl/tPW//TKzUpE2IBStirh1J/aZOPl2Irv/3C747fBlj4+4OinrpRoXxH5rJgtMGl07EksD05BWtnctwDQyEyCWIMtaYlaWzUgddbXzxmZeYY9Xvj+QWi5gbGzTYsMYbZIt/GTXZHYEN87Nmm0vVyPnDH7NFaTD7S9ZVhK1NB3CnhlGMmxNR24SIsP2kH2LDdCbHfZ1qdmBSKTW/+o4JWeVuS8ZASA1cJWynZol5Yfnb16nmE5GopHqsdLawzO55vGXh42mlcoba9jQJbj6cYb2VgoGQC1L7s3qp1l7uu5aGTOXFebrVUw5X2ELGLny1dabXTOr1tnusMXGyYTdnDCrEyHPTITZcEwMhhXDVA4zuErMwVULBbG0WLO5N2GAZ8q+oI+JfqXo2tmXrNaxdlDv4V8Jx7uzs2YQKuveTFAMhcg0qLzAN+xGSb2O4YsEpffsRkQI+SUafl4byjhPTOZI7IFQqOcsaMTEQUgCx73q3Z2kazV8apbdrcKO8StR5yt2xljWcJacuUlbJxtbt90vWVew6XSRuZpyMuW0nxrHZ3Cx42DsPuctSBkIKoNcDV510RO1pGzPlzoJopBx4sayyBnO2Zks2f6UQY2T4L345I/y96kAu/n0kz2C6JbGyXq/HwqSz+CXrKraeKEDMrrNm04vN0Y2Mjd1QyX2BsZdc90U5mjLM/ikb18rEvdGzh5TlU0V1nfFlmljkqQKtaDeuct8Ae8i6dAIAbEzPx7YTV+XOhk2OXrLsbQd7LjSW/LbhRUCJ1bXzd+TY3WeHKY7oULIxY9s5Q4RXq8uqaoW/tZW1mPlDFv42sKPwnSVF5v5z17Ek+ZxNy3eiSkkDCjzsm1W/jc1lWZwaI/MzafxoOTQmBQCQe70Ca18fZH8eZNg3er3e7rKwaSeyd+d3TeSnAXJijZACOGsQVC/pVKHJ6Xq9Hq98m2bz/J/4fLfNvxVLZW2dXRfIHBteY/7n5l9tWlbjWjopy+CqWuN3kmKzdiiHNYcuWZW+xsTbVVK82iwFY2tgb6Bh7k7dXC1Fcz93gxtWHci1u8+qWp0eW45fsWsed/Jzx9pDlzDos2Th+31nr2HxrnMOD2TMDX1hiYLSSoxccgC1v/cIbgtzZV5zgVbK2Wt49ds0/HbTsl7t5b73YCBEdnGDGyavSzeZRnu7FgfPW9a7sbETokCEQsFe61IvNy30rTh7zxeVW73M7zN+a3aaUm7+Nx3NN59IBOaC7cZ2n7Gubc7mhkNFOHjjKrEG0xHmbD0ldxaa+MjI47BFZh6rSsHUo9ziimqL53Pqqlay3vlNFX+vrTqC/eeuW3wzJ3ctLAMhFXCmglaME6KyRocxyw/ZP6MGjLUV0Nl+oyUqvV4vW0lyrbxpodzcHag9R6HU7avMDRXhrGw5Khr+xu5+gBRQ9FTVyn+iZhdY91i8ue2m1+tR0eDRsdIdvliMUUsPyJ0Ns9hGiOwidyRfr2HBMS/xDC5eF/fC9u2BXAT4eBt8l2bVGF7SbKjpGzNxPO8mSkx0z29LILz6YK7ZNGm5xUbb4ezNuWY0va1tdgCgUCttewSp52/O4Yv2P36z7YZHvO43lRD0NDYrIQvfHc4zn1BhmmvX9I9/ZWCnlbWj9hCjfM+6Umo2jdzHDgMhsotF54mDgyVbgyBzJ/2n208b/G+u115HEKN9hDEf/2z+scXnDd7uaqjGjjYJFlFK9O0E7D1CJetHyEG70NIgyGxbKAcfcs0FBrYEQTxbzOOjMWrW7WZeqWxI7Ncetbctr/bdm1OE1Avijaxu7V2J3NfjkxbcacnBEeHhKSsfNYjlh2PNt9uyVbVIgaNN9UFGB7UVR2WNYxrSN2dTumPar0klR2P/OHGAfeVUfbvIOp0e18urRDtWlYY1QmTU7J+yLXrzRuxYwJqGiX9ffRQAcOGzZ0VZ9r8OX7YqvTUvMokdNOn1ejxn4bN3+eutxOUG4Nkl+2VZduQm297kM+XiNXEe40oZ1Nii+4eJeHHAA7Itv7kaS1s4vAE9ILzCb/e8RBhj45WVaUi9KN5NZ2Nyt+NijRAZZe3rx6ZIXXOi0+tlecZ8q9ry2it31k+TM7Li5DWW1NSbj0qitNNT7jYzjRkLgsQs18tlbgAueiAUHR2NRx99FK1bt0b79u0xevRo5OTkGKSprKxEeHg42rZti/vuuw9jxoxBYaHhs8+8vDyMHDkS9957L9q3b48ZM2agttZwY+3duxf9+/eHl5cX/vjHP2LNmjVN8hMbG4sHH3wQ3t7eCAoKwpEjR8ReZTIjv9iyviRsVVunt/r1ajF8e8B8g+J6YvcKq7SCsiEl501tbBt09e7fi3eZbuCedaXEhiXI35Owmtj3aEwdRA+E9u3bh/DwcBw+fBhJSUmoqanBsGHDUFFxt/p3+vTp+Pnnn7F582bs27cPBQUFeOGFF4TpdXV1GDlyJKqrq3Ho0CGsXbsWa9asQVRUlJAmNzcXI0eOxNChQ5GZmYlp06bhjTfewI4dO4Q0GzduRGRkJD766CMcO3YMffv2RWhoKIqKnH/8n5k/nBB9nC+bWHCmjP/6sKRZGPTpLmyUoT3A5RuWB3garbh9IVnTQWPJrebfKHNGi+14+8wSRQoaVsEatoxZaKyzyIaB7HUzZYyl/YM1XQajZVPEHH/SkhcfbOUqu1H0NkKJiYkG/69Zswbt27dHRkYGnnrqKZSWluLbb79FfHw8nn76aQDA6tWr0aNHDxw+fBiPPfYYdu7ciVOnTmHXrl3w9/dHv379MHfuXLz33nuYPXs2PD09ERcXhy5dumDBggUAgB49euDAgQNYtGgRQkNDAQALFy7E5MmTMWnSJABAXFwctm3bhlWrVuH9998Xe9Ud6t9H8i1uWCzlwVpWaT4PZRJXe0o9f7KO2IMIk4VsaCNk7BF4jZUdZOn1eqtreM6I1BBYLG5uwJbjzvEYz1pX7eiQVi01d5K3ESotvfNmi5+fHwAgIyMDNTU1CAkJEdJ0794dnTp1QmpqKgAgNTUVvXv3hr+/v5AmNDQUWq0W2dnZQpqG86hPUz+P6upqZGRkGKRxd3dHSEiIkKaxqqoqaLVag4+SXbhmeW/Fp68qe12IyD7H8sTpQdjafncGfZaML3eI1zBZDjV1OkzfKH5DeJsZCWqlusGIbtQtSEOmwiApB4F1NEkDIZ1Oh2nTpuGJJ55Ar169AAAajQaenp5o06aNQVp/f39oNBohTcMgqH56/TRTabRaLW7fvo3r16+jrq7OaJr6eTQWHR0NX19f4dOxY0ej6ZxNZW0d3v/PCbmzQUQSevM7cUa7t+YGC7jT63rsnguiLFsupsaak4Mjc/N1ykUHLk2ZJA2EwsPDcfLkSWzYsEHKxYhm5syZKC0tFT75+cruh8LS6uXvDufhshUNlmP3nLc1S3a5acUYOqRcrtJuQLVUuP+c4Zg9ekmaMcNMMTvoqoscLJL1IxQREYGtW7ciJSUFDzxwty+JgIAAVFdXo6SkxKBWqLCwEAEBAUKaxm931b9V1jBN4zfNCgsL4ePjg5YtW6JFixZo0aKF0TT182jMy8sLXl5etq2wwlnTYPbLHTnmE0ngf9aLc0dL8pJjkEoybtwK619UcJWLmzNz5sbkzph30WuE9Ho9IiIisGXLFuzevRtdunQxmD5gwADcc889SE5OFr7LyclBXl4egoODAQDBwcHIysoyeLsrKSkJPj4+6Nmzp5Cm4Tzq09TPw9PTEwMGDDBIo9PpkJycLKQhZZGywy5yHLE6CCR5bM8y3nTAHCe8/gmUFvwpJTcm2wi5AT//erXJ9wM+2SVdhiQieo1QeHg44uPj8eOPP6J169ZCexxfX1+0bNkSvr6+CAsLQ2RkJPz8/ODj44O3334bwcHBeOyxxwAAw4YNQ8+ePfHqq69i3rx50Gg0mDVrFsLDw4UamzfffBPLli3Du+++i9dffx27d+/Gpk2bsG3bNiEvkZGRmDhxIgYOHIhBgwYhJiYGFRUVwltkRERE5oK4fWeNDyTs6sy9NWZsQNViJ2ziIHogtHz5cgDAkCFDDL5fvXo1/v73vwMAFi1aBHd3d4wZMwZVVVUIDQ3FV199JaRt0aIFtm7dirfeegvBwcFo1aoVJk6ciDlz5ghpunTpgm3btmH69OlYvHgxHnjgAaxcuVJ4dR4Axo0bh2vXriEqKgoajQb9+vVDYmJikwbUREREzRFzTENSHtEDIUueD3p7eyM2NhaxsbHNpuncuTO2b99ucj5DhgzB8ePHTaaJiIhARESE2TwREREZ4+ghIJz5MaMz4lhjREREJhjrgVtKSomDTPcj5DoYCBERkd3kettUDEqrgalgb/kOxUCIiIhU7adfr8idBQO7zyhkPExXqvYxgYEQkYJlXHZslTyRGn2zP1fuLCiSG9xUUTvFQIhIwawd94mISCzH8m7i4Y92GJ328so0B+dGOgyEiBRsy3FlVdkTkXrkXldH56gMhIiIiEi1GAgRERGRajEQIiIiItViIERERESqxUCIiIiIVIuBEBEREakWAyEiIiJSLQZCREREpFoMhIiIiEi1GAgRERGRajEQIiIiItViIERERESqxUCIiIiIVIuBEBEREakWAyEiIiJSLQZCREREpFoMhIiIiEi1GAgRERGRajEQIiIiItViIERERESqxUCIiIiIVIuBEBEREakWAyEiIiJSLQZCREREpFqqCIRiY2Px4IMPwtvbG0FBQThy5IjcWSIiIiIFcPlAaOPGjYiMjMRHH32EY8eOoW/fvggNDUVRUZHcWSMiIiKZuXwgtHDhQkyePBmTJk1Cz549ERcXh3vvvRerVq2SO2tEREQkM5cOhKqrq5GRkYGQkBDhO3d3d4SEhCA1NbVJ+qqqKmi1WoOPFC5dr5BkvkRERM6o5Fa1bMt26UDo+vXrqKurg7+/v8H3/v7+0Gg0TdJHR0fD19dX+HTs2FGSfHX0u1eS+RIRETkjN7jJtmyXDoSsNXPmTJSWlgqf/Px8SZbTwt0NU576gyTzJiIiciavP9EFvvfeI9vyPWRbsgO0a9cOLVq0QGFhocH3hYWFCAgIaJLey8sLXl5eDsnbB8/2wAfP9nDIsoiIiMg4l64R8vT0xIABA5CcnCx8p9PpkJycjODgYBlzRkRERErg0jVCABAZGYmJEydi4MCBGDRoEGJiYlBRUYFJkybJnTUiIiKSmcsHQuPGjcO1a9cQFRUFjUaDfv36ITExsUkDaiIiIlIfN71er5c7E0ql1Wrh6+uL0tJS+Pj4yJ0dIiIisoA112+XbiNEREREZAoDISIiIlItBkJERESkWgyEiIiISLUYCBEREZFqMRAiIiIi1WIgRERERKrFQIiIiIhUi4EQERERqZbLD7Fhj/pOt7Varcw5ISIiIkvVX7ctGTyDgZAJZWVlAICOHTvKnBMiIiKyVllZGXx9fU2m4VhjJuh0OhQUFKB169Zwc3MTdd5arRYdO3ZEfn6+6scx47a4i9viLm6Lu7gt7uK2uIvb4q7G20Kv16OsrAyBgYFwdzfdCog1Qia4u7vjgQcekHQZPj4+qj+A63Fb3MVtcRe3xV3cFndxW9zFbXFXw21hriaoHhtLExERkWoxECIiIiLVYiAkEy8vL3z00Ufw8vKSOyuy47a4i9viLm6Lu7gt7uK2uIvb4i57tgUbSxMREZFqsUaIiIiIVIuBEBEREakWAyEiIiJSLQZCREREpFoMhGQSGxuLBx98EN7e3ggKCsKRI0fkzpLDpaSkYNSoUQgMDISbmxsSEhLkzpJsoqOj8eijj6J169Zo3749Ro8ejZycHLmzJYvly5ejT58+QsdowcHB+OWXX+TOluw+//xzuLm5Ydq0aXJnRRazZ8+Gm5ubwad79+5yZ0s2V65cwSuvvIK2bduiZcuW6N27N9LT0+XOlsM9+OCDTY4LNzc3hIeHWzwPBkIy2LhxIyIjI/HRRx/h2LFj6Nu3L0JDQ1FUVCR31hyqoqICffv2RWxsrNxZkd2+ffsQHh6Ow4cPIykpCTU1NRg2bBgqKirkzprDPfDAA/j888+RkZGB9PR0PP3003j++eeRnZ0td9Zkc/ToUXz99dfo06eP3FmR1cMPP4yrV68KnwMHDsidJVncvHkTTzzxBO655x788ssvOHXqFBYsWID7779f7qw53NGjRw2OiaSkJADA2LFjLZ+Jnhxu0KBB+vDwcOH/uro6fWBgoD46OlrGXMkLgH7Lli1yZ0MxioqK9AD0+/btkzsrinD//ffrV65cKXc2ZFFWVqbv2rWrPikpSf/nP/9ZP3XqVLmzJIuPPvpI37dvX7mzoQjvvfeefvDgwXJnQ5GmTp2qf+ihh/Q6nc7i37BGyMGqq6uRkZGBkJAQ4Tt3d3eEhIQgNTVVxpyRkpSWlgIA/Pz8ZM6JvOrq6rBhwwZUVFQgODhY7uzIIjw8HCNHjjQoM9Tq3LlzCAwMxB/+8AdMmDABeXl5cmdJFj/99BMGDhyIsWPHon379njkkUfwzTffyJ0t2VVXV+O7777D66+/btVA6QyEHOz69euoq6uDv7+/wff+/v7QaDQy5YqURKfTYdq0aXjiiSfQq1cvubMji6ysLNx3333w8vLCm2++iS1btqBnz55yZ8vhNmzYgGPHjiE6OlrurMguKCgIa9asQWJiIpYvX47c3Fw8+eSTKCsrkztrDnfx4kUsX74cXbt2xY4dO/DWW2/hnXfewdq1a+XOmqwSEhJQUlKCv//971b9jqPPEylMeHg4Tp48qdr2DwDQrVs3ZGZmorS0FN9//z0mTpyIffv2qSoYys/Px9SpU5GUlARvb2+5syO7ESNGCH/36dMHQUFB6Ny5MzZt2oSwsDAZc+Z4Op0OAwcOxGeffQYAeOSRR3Dy5EnExcVh4sSJMudOPt9++y1GjBiBwMBAq37HGiEHa9euHVq0aIHCwkKD7wsLCxEQECBTrkgpIiIisHXrVuzZswcPPPCA3NmRjaenJ/74xz9iwIABiI6ORt++fbF48WK5s+VQGRkZKCoqQv/+/eHh4QEPDw/s27cPS5YsgYeHB+rq6uTOoqzatGmDP/3pTzh//rzcWXG4Dh06NLkp6NGjh2ofFQLA5cuXsWvXLrzxxhtW/5aBkIN5enpiwIABSE5OFr7T6XRITk5WbRsIAvR6PSIiIrBlyxbs3r0bXbp0kTtLiqLT6VBVVSV3NhzqmWeeQVZWFjIzM4XPwIEDMWHCBGRmZqJFixZyZ1FW5eXluHDhAjp06CB3VhzuiSeeaNK9xtmzZ9G5c2eZciS/1atXo3379hg5cqTVv+WjMRlERkZi4sSJGDhwIAYNGoSYmBhUVFRg0qRJcmfNocrLyw3u5nJzc5GZmQk/Pz906tRJxpw5Xnh4OOLj4/Hjjz+idevWQnsxX19ftGzZUubcOdbMmTMxYsQIdOrUCWVlZYiPj8fevXuxY8cOubPmUK1bt27SRqxVq1Zo27atKtuO/fOf/8SoUaPQuXNnFBQU4KOPPkKLFi3w0ksvyZ01h5s+fToef/xxfPbZZ/jb3/6GI0eOYMWKFVixYoXcWZOFTqfD6tWrMXHiRHh42BDWSPcSG5mydOlSfadOnfSenp76QYMG6Q8fPix3lhxuz549egBNPhMnTpQ7aw5nbDsA0K9evVrurDnc66+/ru/cubPe09NT///+3//TP/PMM/qdO3fKnS1FUPPr8+PGjdN36NBB7+npqf+v//ov/bhx4/Tnz5+XO1uy+fnnn/W9evXSe3l56bt3765fsWKF3FmSzY4dO/QA9Dk5OTb93k2v1+vFicmIiIiInAvbCBEREZFqMRAiIiIi1WIgRERERKrFQIiIiIhUi4EQERERqRYDISIiIlItBkJERESkWgyEiIiIyOFSUlIwatQoBAYGws3NDQkJCVbPQ6/XY/78+fjTn/4ELy8v/Nd//Rc+/fRTq+bBITaIiIjI4SoqKtC3b1+8/vrreOGFF2yax9SpU7Fz507Mnz8fvXv3RnFxMYqLi62aB3uWJiIiIlm5ublhy5YtGD16tPBdVVUV/u///g///ve/UVJSgl69euGLL77AkCFDAACnT59Gnz59cPLkSXTr1s3mZfPRGBERESlOREQEUlNTsWHDBpw4cQJjx47F8OHDce7cOQDAzz//jD/84Q/YunUrunTpggcffBBvvPGG1TVCDISIiIhIUfLy8rB69Wps3rwZTz75JB566CH885//xODBg7F69WoAwMWLF3H58mVs3rwZ69atw5o1a5CRkYEXX3zRqmWxjRAREREpSlZWFurq6vCnP/3J4Puqqiq0bdsWAKDT6VBVVYV169YJ6b799lsMGDAAOTk5Fj8uYyBEREREilJeXo4WLVogIyMDLVq0MJh23333AQA6dOgADw8Pg2CpR48eAO7UKDEQIiIiIqf0yCOPoK6uDkVFRXjyySeNpnniiSdQW1uLCxcu4KGHHgIAnD17FgDQuXNni5fFt8aIiIjI4crLy3H+/HkAdwKfhQsXYujQofDz80OnTp3wyiuv4ODBg1iwYAEeeeQRXLt2DcnJyejTpw9GjhwJnU6HRx99FPfddx9iYmKg0+kQHh4OHx8f7Ny50+J8MBAiIiIih9u7dy+GDh3a5PuJEydizZo1qKmpwSeffIJ169bhypUraNeuHR577DF8/PHH6N27NwCgoKAAb7/9Nnbu3IlWrVphxIgRWLBgAfz8/CzOBwMhIiIiUi2+Pk9ERESqxUCIiIiIVIuBEBEREakWAyEiIiJSLQZCREREpFoMhIiIiEi1GAgRERGRajEQIiIiItViIERERESqxUCIiIiIVIuBEBEREakWAyEiIiJSrf8P3vCF+WY4zeQAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from matplotlib import pyplot as plt\n",
"\n",
"plt.plot(df['CO2'].to_list())"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9946f5cd-3683-49db-8535-393cb04140ce",
"metadata": {},
"outputs": [],
"source": [
"tokenizer_path = 'DeepChem/ChemBERTa-77M-MTR'\n",
"tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)\n",
"\n",
"# Only the hidden size is slightly larger, everything else is the same\n",
"config = BertConfig(\n",
" vocab_size=tokenizer.vocab_size,\n",
" hidden_size=768,\n",
" num_hidden_layers=4,\n",
" num_attention_heads=12,\n",
" intermediate_size=2048,\n",
" max_position_embeddings=512\n",
" )\n",
"\n",
"simson_params = torch.load('/home/jovyan/simson_training_bolgov/simson_checkpoints_1M/checkpoint_best_model.bin')\n",
"\n",
"backbone = SimSonEncoder(config=config, max_len=512)\n",
"backbone = torch.compile(backbone)\n",
"backbone.load_state_dict(simson_params)\n",
"\n",
"\n",
"model = SimSonClassifier(encoder=backbone, num_labels=len(targets))\n",
"model = torch.compile(model, fullgraph=True)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "903489f0-9039-4504-894e-6739b4a15371",
"metadata": {},
"outputs": [],
"source": [
"def create_splits(df):\n",
" length = len(df)\n",
" train_length = int(0.99 * length)\n",
" train = df.loc[:train_length]\n",
" test = df.loc[train_length:]\n",
" return train, test\n",
"\n",
"train, test = create_splits(df)\n",
"\n",
"train = train.reset_index(drop=True)\n",
"test = test.reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "00c271f1-bd44-457d-9a0e-7b221871ab78",
"metadata": {},
"outputs": [],
"source": [
"scalers = []\n",
"\n",
"for target in targets:\n",
" target_scaler = StandardScaler()\n",
" train[target] = target_scaler.fit_transform(train[target].to_numpy().reshape(-1, 1))\n",
" test[target] = target_scaler.transform(test[target].to_numpy().reshape(-1, 1))\n",
" \n",
" scalers.append(target_scaler)\n",
"\n",
"smiles_train = train['Smiles']\n",
"smiles_test = test['Smiles']\n",
"\n",
"labels_train = train[targets].values\n",
"labels_test = test[targets].values"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "01ebce4a-9ac0-4527-a9bd-8d13913f15e3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['/home/jovyan/simson_training_bolgov/regression/scalers']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import joblib\n",
"\n",
"joblib.dump(scalers, '/home/jovyan/simson_training_bolgov/regression/scalers')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4405c601-f006-4eeb-989e-fb35dd5349ba",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Setting up datasets for two-label training (labels assumed pre-scaled)\n",
"Training dataset statistics:\n",
" total_samples: 6659681\n",
" label_0_count: 6659681\n",
" label_1_count: 6659681\n",
" label_0_ratio: 1.0\n",
" label_1_ratio: 1.0\n",
" both_labels_count: 0\n",
" single_label_count: 0\n",
" no_labels_count: 0\n",
"Validation dataset statistics:\n",
" total_samples: 67270\n",
" label_0_count: 67270\n",
" label_1_count: 67270\n",
" label_0_ratio: 1.0\n",
" label_1_ratio: 1.0\n",
" both_labels_count: 0\n",
" single_label_count: 0\n",
" no_labels_count: 0\n",
"Computed label weights: [0.33333334 0.33333334 0.33333334 0.33333334 0.33333334 0.33333334]\n",
"Using device: cuda\n",
"Training steps per epoch: 26015\n",
"Total training steps: 78045\n",
"Label weights: [0.33333334 0.33333334 0.33333334 0.33333334 0.33333334 0.33333334]\n",
"Validation will be performed every 7000 steps\n",
"\n",
"Epoch 1/3\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 27%|βββ | 7001/26015 [10:27<10:43:20, 2.03s/it, step=7002, loss=0.0372, true_loss=16.0679, lr=1.84e-05]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 7000 | Train Loss: 0.0618 | Val Loss: 0.1191 | True train loss: 17.4244 | True val loss: 18.3473\n",
"New best validation loss: 0.1191\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 54%|βββββ | 14001/26015 [20:40<3:46:01, 1.13s/it, step=14002, loss=0.0315, true_loss=15.1059, lr=1.68e-05]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 14000 | Train Loss: 0.0357 | Val Loss: 0.0652 | True train loss: 16.0534 | True val loss: 17.3651\n",
"New best validation loss: 0.0652\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 81%|βββββββ | 21001/26015 [30:53<1:34:27, 1.13s/it, step=21002, loss=0.0348, true_loss=15.9539, lr=1.52e-05]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 21000 | Train Loss: 0.0319 | Val Loss: 0.0438 | True train loss: 15.7137 | True val loss: 16.3045\n",
"New best validation loss: 0.0438\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" \r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Epoch 2/3\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 8%|β | 1987/26015 [02:59<5:37:18, 1.19it/s, step=28002, loss=0.0224, true_loss=14.3285, lr=1.35e-05]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 28000 | Train Loss: 0.0284 | Val Loss: 0.0393 | True train loss: 15.0774 | True val loss: 15.2044\n",
"New best validation loss: 0.0393\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 35%|βββ | 8987/26015 [13:13<3:55:46, 1.20it/s, step=35002, loss=0.0302, true_loss=13.3737, lr=1.19e-05]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 35000 | Train Loss: 0.0257 | Val Loss: 0.0279 | True train loss: 14.4303 | True val loss: 14.4498\n",
"New best validation loss: 0.0279\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 61%|βββββ | 15987/26015 [23:29<2:17:59, 1.21it/s, step=42002, loss=0.0264, true_loss=14.5345, lr=1.03e-05]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 42000 | Train Loss: 0.0245 | Val Loss: 0.0351 | True train loss: 14.1197 | True val loss: 14.2312\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 88%|βββββββββ | 22987/26015 [33:46<41:56, 1.20it/s, step=49002, loss=0.0216, true_loss=14.1316, lr=8.70e-06]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 49000 | Train Loss: 0.0233 | Val Loss: 0.0290 | True train loss: 13.9434 | True val loss: 14.4628\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" \r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Epoch 3/3\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 15%|ββ | 3971/26015 [05:52<7:13:46, 1.18s/it, step=56002, loss=0.0254, true_loss=14.4344, lr=7.08e-06]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 56000 | Train Loss: 0.0229 | Val Loss: 0.0479 | True train loss: 13.9115 | True val loss: 14.0929\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 42%|ββββ | 10971/26015 [16:06<4:48:34, 1.15s/it, step=63002, loss=0.0201, true_loss=12.8691, lr=5.47e-06]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 63000 | Train Loss: 0.0219 | Val Loss: 0.0239 | True train loss: 13.6746 | True val loss: 13.5177\n",
"New best validation loss: 0.0239\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 69%|βββββββ | 17971/26015 [26:24<2:31:18, 1.13s/it, step=7e+4, loss=0.0248, true_loss=14.9835, lr=3.86e-06]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 70000 | Train Loss: 0.0212 | Val Loss: 0.0259 | True train loss: 13.5072 | True val loss: 13.7410\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Training: 96%|ββββββββββ| 24971/26015 [36:41<19:36, 1.13s/it, step=77002, loss=0.0228, true_loss=13.9553, lr=2.24e-06]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Step 77000 | Train Loss: 0.0207 | Val Loss: 0.0267 | True train loss: 13.4052 | True val loss: 13.8021\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded best model with validation loss: 0.0239\n",
"Training completed.\n",
"Number of validation checkpoints: 11\n",
"Final training losses: [0.022863016219410514, 0.02186289042873042, 0.021151691354678145, 0.020719855580878046, 0.020669196563010864]\n",
"Best validation loss: 0.0239\n",
"Model saved successfully!\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\r"
]
}
],
"source": [
"import numpy as np\n",
"import torch\n",
"from torch.optim import AdamW\n",
"from torch.optim.lr_scheduler import LinearLR\n",
"from torch.utils.data import DataLoader\n",
"from tqdm import tqdm\n",
"\n",
"train_losses, val_losses, best_loss = run_training(\n",
" smiles_train, smiles_test, labels_train, labels_test, \n",
" model, tokenizer, scalers, num_epochs=3, learning_rate=2e-5, batch_size=256, validation_steps=7000,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:.mlspace-bolgov_simson_training]",
"language": "python",
"name": "conda-env-.mlspace-bolgov_simson_training-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|